Cambridge International AS \& A Level

MATHEMATICS	$9709 / 52$
Paper 5 Probability and Statistics	March 2020
MARK SCHEME	

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

PUBLISHED

Question	Answer	Marks	Guidance
1	${ }^{38} \mathrm{C}_{\mathrm{r}}$ or ${ }^{\mathrm{n}} \mathrm{C}_{34}$	$\mathbf{M 1}$	Either expression seen OE, no other terms, condone x 1
	${ }^{38} \mathrm{C}_{34}$	$\mathbf{A 1}$	Correct unsimplified OE
	73815	$\mathbf{A 1}$	If M0, SCB1 ${ }^{38} \mathrm{C}_{34} \times k, k$ an integer
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$2(\mathrm{a})$	$\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{2}+\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{3}+\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{4}$	M1	One correct term with $0<p<1$
	$=\frac{4}{27}+\frac{8}{81}+\frac{16}{243}\left(=\frac{2432}{7776}\right)$	$\mathbf{A 1}$	Correct expression, accept unsimplified
	$=\frac{76}{243}$ or 0.313	$\mathbf{A 1}$	

Question	Answer	Marks	Guidance
3(a)	$\mathrm{P}(X>87)=\mathrm{P}\left(Z>\frac{87-82}{\sigma}\right)=0.22$	M1	Using \pm standardisation formula, not $\sigma^{2}, \operatorname{not} \sqrt{\sigma}$, no continuity correction
	$\begin{aligned} & \mathrm{P}\left(Z<\frac{5}{\sigma}\right)=0.78 \\ & \left(\frac{5}{\sigma}=\right) 0.772 \end{aligned}$	B1	AWRT ± 0.772 seen B0 for ± 0.228
	$\sigma=6.48$	A1	
		3	
3(b)	$\mathrm{P}\left(-\frac{4}{\sigma}<Z<\frac{4}{\sigma}\right)=\mathrm{P}(-0.6176<Z<0.6176)$	M1	Using ± 4 used within a standardisation formula (SOI), allow $\sigma^{2}, \sqrt{\sigma}$ and continuity correction
		M1	Standardisation formula applied to both their ± 4
	$\begin{aligned} & \Phi=0.7317 \\ & \text { Prob }=2 \Phi-1=2(0.7317)-1 \end{aligned}$	M1	Correct area $2 \Phi-1$ oe linked to final solution
	$=0.463$	A1	
		4	

Question	Answer	Marks	Guidance
4(a)	$\begin{aligned} & \mathrm{R} \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge R \\ & \frac{9!}{3!6!} \end{aligned}$	M1	9! Alone on numerator, $3!\times k$ or $6!\times k$ on denominator
	$=84$	A1	
		2	
4(b)	$\wedge(B B B)^{\wedge \wedge \wedge \wedge \wedge}$	M1	$\frac{7!}{6!} \times k \text { or } 7 k \text { seen, } k \text { an integer }>0$
	$\frac{7!}{6!} \times \frac{8 \times 7}{2}$	M1	$m \times n(n-1)$ or $m \times{ }^{n} C_{2}$ or $m \times{ }^{n} P_{2}, n=7,8$ or $9, m$ an integer >0
		M1	$n=8$ used in above expression
	$=196$	A1	
	Alternative for question 4(b)		
	[Arrangements, blues together - Arrangements with blues together and reds together $=$] $\frac{9!}{2!6!}-\frac{8!}{6!}$	M1	9! Seen alone or as numerator with subtraction
	$=[252-56]$	M1	8! Seen alone or as numerator in a second term and no other terms
		M1	All terms divided by 6! $\mathrm{x} k, k$ an integer
	$=196$	A1	
		4	

Question	Answer	Marks	Guidance
5(a)	$\begin{aligned} & 1-\mathrm{P}(6,7,8) \\ & =1-\left({ }^{8} \mathrm{C}_{6} 0.7^{6} 0.3^{2}+{ }^{8} \mathrm{C}_{7} 0.7^{7} 0.3^{1}+0.7^{8}\right) \end{aligned}$	M1	One term ${ }^{8} \mathrm{C}_{\mathrm{x}} p^{x}(1-p)^{8-x}, \quad 0<p<1, x \neq 0$
	$=1-0.55177$	A1	Correct unsimplified expression, or better
	$=0.448$	A1	
	Alternative method for question 5(a)		
	$\begin{aligned} & \mathrm{P}(0,1,2,3,4,5) \\ & =0.3^{8}+{ }^{8} \mathrm{C}_{1} 0.7^{1} 0.3^{7}+{ }^{8} \mathrm{C}_{2} 0.7^{2} 0.3^{6}+{ }^{8} \mathrm{C}_{3} 0.7^{3} 0.3^{5}+ \\ & { }^{8} \mathrm{C}_{4} 0.7^{4} 0.3^{4}+{ }^{8} \mathrm{C}_{5} 0.7^{5} 0.3^{3} \end{aligned}$	M1	One term ${ }^{8} \mathrm{C}_{\mathrm{x}} p^{x}(1-p)^{8-x}, \quad 0<p<1, x \neq 0$
		A1	Correct unsimplified expression, or better
	$=0.448$	A1	
		3	
5(b)	$\begin{aligned} & \text { Mean }=120 \times 0.7=84 \\ & \text { Var }=120 \times 0.7 \times 0.3=25.2 \end{aligned}$	B1	Correct mean and variance, allow unsimplified
	$\mathrm{P}(\text { more than } 75)=\mathrm{P}\left(z>\frac{75.5-84}{\sqrt{25.2}}\right)$	M1	Substituting their μ and σ into the \pm standardising formula (any number), $\operatorname{not} \sigma^{2}, \operatorname{not} \sqrt{ } \sigma$
		M1	Using continuity correction 75.5 or 74.5
	$\mathrm{P}(z>-1.693)$	M1	Appropriate area Φ, from final process, must be a probability
	$=0.955$	A1	Allow $0.9545<p \leqslant 0.955$
		5	

| Question | Box A | Marks | Guidance |
| :---: | :---: | ---: | :--- | :--- |
| 6(a) | Box B | B1 | Both correct probs, box A |

Question	Answer	Marks	Guidance
6(c)	$\begin{aligned} & \mathrm{P}(\mathrm{~A} \text { blue } \mid \mathrm{B} \text { blue })=\frac{\mathrm{P}(\mathrm{~A} \text { blue } \cap \mathrm{B} \text { blue })}{\mathrm{P}(\mathrm{~B} \text { blue })} \\ & =\frac{\frac{1}{8} \times \frac{6}{15}}{\frac{7}{8} \times \frac{5}{15}+\frac{1}{8} \times \frac{6}{15}}=\frac{\frac{1}{20}}{\frac{41}{120}} \end{aligned}$	M1	their $\frac{1}{8} \times \frac{6}{15}$ seen as numerator or denom of fraction
		M1	their $\frac{7}{8} \times \frac{5}{15}+\frac{1}{8} \times \frac{6}{15}$ seen
		M1	their $\frac{7}{8} \times \frac{5}{15}+\frac{1}{8} \times \frac{6}{15}$ seen as denominator
	$=\frac{6}{41}$ or 0.146	A1	
		4	

Question	Answer	Marks	Guidance
7(c)	Midpoints: 4.75, 12, 17, 25	M1	At least 3 correct midpoints used (39449.4375 implies M1)
	$\operatorname{Var}=\frac{4.75^{2} \times 15+12^{2} \times 48+17^{2} \times 66+25^{2} \times 21}{150}-15.295^{2}$	M1	Using midpoints ± 0.5 in correct var formula, including subtraction of their μ^{2}.
	$=29.1$	A1	
		3	

Cambridge International AS \& A Level

MATHEMATICS	9709/52
Paper 5 Probability and Statistics 1	March $\mathbf{2 0 2 1}$
MARK SCHEME	

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\left[\left(\frac{4}{5}\right)^{7} \frac{1}{5}=\right] \frac{16384}{390625}$ or $0.0419[43 \ldots]$	B1	Evaluated, final answer.
		1	
1(b)	$1-\left(\frac{4}{5}\right)^{5}$ or $\frac{1}{5}+\frac{4}{5} \times \frac{1}{5}\left(\frac{4}{5}\right)^{2} \times \frac{1}{5}+\left(\frac{4}{5}\right)^{3} \times \frac{1}{5}+\left(\frac{4}{5}\right)^{4} \times \frac{1}{5}$	M1	$\begin{aligned} & 1-p^{\mathrm{n}} n=5,6 \\ & \text { or } p+p q+p q^{2}+p q^{3}+p q^{4}\left(+p q^{5}\right) \\ & 0<p<1, p+q=1, \end{aligned}$ Sum of a geometric series may be used.
	$\frac{2101}{3125} \text { or } 0 \cdot 672[32]$	A1	Final answer.
	Alternative method for question 1(b)		
	$[\mathrm{P}($ at least 1 three scored in 5 throws $)=]$ $\left(\frac{1}{5}\right)^{5}+{ }^{5} \mathrm{C}_{4}\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right)+{ }^{5} \mathrm{C}_{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{2}+{ }^{5} \mathrm{C}_{2}\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{3}+{ }^{5} \mathrm{C}_{4}\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)^{4}$	M1	$(p)^{5}+{ }^{5} \mathrm{C}_{4}(p)^{4}(q)+{ }^{5} \mathrm{C}_{3}(p)^{3}(q)^{2}+{ }^{5} \mathrm{C}_{2}(p)^{2}(q)^{3}+{ }^{5} \mathrm{C}_{1}(p)(q)^{4}$ or $\begin{aligned} & (p)^{6}+{ }^{6} \mathrm{C}_{5}(p)^{5}(q)+{ }^{6} \mathrm{C}_{4}(p)^{4}(q)^{2}+{ }^{6} \mathrm{C}_{3}(p)^{3}(q)^{3} \\ & +{ }^{6} \mathrm{C}_{2}(p)^{2}(q)^{4}+{ }^{6} \mathrm{C}_{1}(p)(q)^{5}, 0<p<1, p+q=1 \end{aligned}$ At least first, last and one intermediate term is required to show pattern of terms if not all terms stated.
	$\frac{2101}{3125} \text { or } 0 \cdot 672[32]$	A1	Final answer.
		2	

Question	Answer	Marks	Guidance
2(a)	$0.2[\times 1]+0.45 \times 0.4+0.35 \times 0.3$	M1	$0 \cdot 2[\times 1]+0.45 \times b+0.35 \times c, b=0.4,0.6 c=0.3,0.7$
	$0.485 \text { or } \frac{97}{200}$	A1	
		2	
2(b)	$P(Y \mid \bar{H})=\frac{P(Y \cap \bar{H})}{P(\bar{H})}=\frac{0.35 \times 0.7}{1-\text { their }(\mathbf{a})}=\frac{0.245}{0.515}$	B1	0.35×0.7 or 0.245 seen as numerator or denominator of fraction.
		M1	$\begin{aligned} & 0.515 \text { or } 1-\text { their } \mathbf{(a)} \text { or } \\ & {[0.3 \times 0+] 0.45 \times d+0.35 \times e, \text { where } d=\text { their } b^{\prime}, e=\text { their }} \\ & c^{\prime} \text { seen as denominator of fraction. } \end{aligned}$
	$0 \cdot 476 \text { or } \frac{49}{103}$	A1	$0.4757 \leqslant p \leqslant 0.476$
		3	

Question	Answer	Marks	Guidance
$3(\mathrm{a})$	$\mathrm{P}\left(\left(\frac{85-96}{18}\right)<z<\left(\frac{100-96}{18}\right)\right)$	$\mathbf{M 1}$	Use of \pm standardisation formula once with appropriate values substituted, no continuity correction, not σ^{2} or $\sqrt{ } \sigma$.
	$\mathrm{P}(-0.6111<z<0.2222)$ $=\Phi(0.2222)+\Phi(0.6111)-1$ $=0.5879+0.7294-1$	$\mathbf{M 1}$	Appropriate area Φ, from final process, must be probability. Use of $(1-z)$ implies M0.
	0.317	$\mathbf{A 1}$	Final answer which rounds to $0 \cdot 317$.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
3(b)	$z= \pm 1 \cdot 175$	B1	$1 \cdot 17 \leqslant z \leqslant 1 \cdot 18$ or $-1 \cdot 18 \leqslant z \leqslant-1 \cdot 17$
	$-1.175=\frac{t-96}{18}$	M1	An equation using \pm standardisation formula with a z-value, condone $\sigma^{2}, \sqrt{ } \sigma$ or continuity correction. E.g. equating to $0 \cdot 88,0 \cdot 12,0 \cdot 8106,0 \cdot 1894,0 \cdot 5478,0 \cdot 4522$, $\pm 0 \cdot 175$ or $\pm 2 \cdot 175$ implies M0.
	$74 \cdot 85$ or 74.9	A1	$74.85 \leqslant t \leqslant 74.9$
		3	

Question	Answer	Marks	Guidance
5(c)	Midpoints: $2.25,7.5,15.5,25.5,35.5,50.5$	B1	At least 5 correct midpoints seen.
	$\begin{aligned} & \text { Mean }=\frac{2.25 \times 12+7.5 \times 16+15.5 \times 32+25.5 \times 66+35.5 \times 20+50.5 \times 4}{150} \\ & =\frac{27+120+496+1683+710+202}{150} \end{aligned}$	M1	Using 6 midpoint attempts (e.g. $2 \cdot 25 \pm 0 \cdot 5$), condone one error not omission, multiplied by frequency, accept unevaluated, denominator either correct or their Σ frequencies.
	$\left[=\frac{3238}{150}\right]=21.6,21 \frac{44}{75}$	A1	Evaluated, WWW, accept $21 \cdot 5[866 \ldots]$.
		3	

Question	Answer	Marks	Guidance
$6(\mathrm{a})$	$\frac{11!}{2!2!2!}$	$\mathbf{M 1}$	$11!$ alone as numerator. $2!\times m!\times n!$ on denominator, $m=1,2, n=1,2$. no additional terms, no additional operations.
	4989600	A1	Exact answer only.
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
6(b)	Method $1 \mathrm{R}^{\wedge} \wedge \wedge \wedge \wedge \wedge \wedge \mathrm{R}$		
	Arrange the 7 letters CTEPILL $=\frac{7!}{2!}$ Number of ways of placing As in non-adjacent places $={ }^{8} C_{2}$ $\frac{7!}{2!} \times{ }^{8} C_{2}$	B1	$\frac{7!}{2!} \times k \text { seen, } k \text { an integer }>1 .$
		M1	$m \times n(n-1)$ or $m \times{ }^{n} C_{2}$ or $m \times{ }^{n} P_{2}, n=7,8$ or $9, m$ an integer >1.
		M1	$\frac{7!}{p!} \times{ }^{8} C_{2}$ or $\frac{7!}{p!} \times{ }^{8} P_{2}, p$ integer $\geqslant 1$, condone 2520×28.
	$=70560$	A1	Exact answer only. SC B1 70560 from M0, M1 only.
	Method 2 [Arrangements Rs at ends - Arrangements Rs at ends and As together]		
	Total arrangements with R at beg. and end $=\frac{9!}{2!2!}$ Arrangements with R at ends and As together $=\frac{8!}{2!}$ With As not together $=\frac{9!}{2!2!}-\frac{8!}{2!}$	M1	$\frac{9!}{2!m!}-k, 90720>k \text { integer }>1, m=1,2$
		B1	$s-\frac{8!}{2!}, s \text { an integer }>1$
		M1	$\frac{9!}{p}-\frac{8!}{q}, p, q$ integers $\geqslant 1$, condone $90720-20160$.
	$[90720-20160]=70560$	A1	Exact answer only. SC B1 70560 from M0, M1 only.
		4	

Question	Answer	Marks	Guidance
6(c)	Method 1		
	$\begin{array}{lll} \text { R R A L }- & { }^{5} \mathrm{C}_{2} & =10 \\ \text { R R A L L } & { }^{5} \mathrm{C}_{1} & =5 \\ \text { R R A A L } & { }^{5} \mathrm{C}_{1} & =5 \\ \text { R R A A L } \overline{\mathrm{L}} & & =1 \end{array}$	M1	${ }^{5} \mathrm{C}_{x}$ seen alone or ${ }^{5} \mathrm{C}_{x} \times k, 2 \geqslant k \geqslant 1, k$ an integer, $0<x<5$ linked to an appropriate scenario.
		A1	${ }^{5} \mathrm{C}_{2} \times k, k=1$ oe or ${ }^{5} \mathrm{C}_{1} \times m, m=1,2$ oe alone. SC if ${ }^{5} \mathrm{C}_{x}$ not seen. B2 for 5 or 10 linked to the appropriate scenario WWW.
		M1	Add outcomes from 3 or 4 identified correct scenarios only, accept unsimplified. ${ }^{2} \mathrm{C}_{w} \times{ }^{2} \mathrm{C}_{x} \times{ }^{2} \mathrm{C}_{y} \times{ }^{5} \mathrm{C}_{z}, w+x+y+z=6$ identifies $w \mathrm{Rs}, \times$ As and y Ls.
	[Total =] 21	A1	WWW, only dependent on 2 nd M mark. Note: ${ }^{5} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{1}+1=21$ is sufficient for $4 / 4$.
			SC not all (or no) scenarios identified. B1 $10+5+5+1$ DB1 $=21$
	Method 2 - Fixing RRAL first. N.B. No other scenarios can be present anywhere in solution.		
	RRAL ${ }^{\wedge} \wedge={ }^{7} \mathrm{C}_{2}$	M1	${ }^{7} \mathrm{C}_{x}$ seen alone or ${ }^{7} \mathrm{C}_{x} \times k, 2 \geqslant k \geqslant 1, k$ an integer, $0<x<7$. Condone ${ }^{7} \mathrm{P}_{x}$ or ${ }^{7} \mathrm{P}_{x} \times k, 2 \geqslant k \geqslant 1, k$ an integer, $0<x<7$.
		M1	${ }^{7} \mathrm{C}_{2} \times k, 2 \geqslant k \geqslant 1 \mathrm{oe}$
		A1	${ }^{7} \mathrm{C}_{2} \times k, k=1 \mathrm{e}$ no other terms.
	[Total =] 21	A1	Value stated.
		4	

Question	Answer	Marks	Guidance
7(a)(i)	$\left[\frac{104+31}{400}=\right] \frac{135}{400}, \frac{27}{80}, 0.3375$	B1	Evaluated, exact value.
		1	
7(a)(ii)	Method 1		
	$\mathrm{P}(M)=\frac{180}{400}, 0.45 \mathrm{P}(S)=\frac{135}{400}, 0.3375 \mathrm{P}(M \cap S)=\frac{31}{400}, 0.0775$ $\frac{180}{400} \times \frac{135}{400}=\frac{243}{1600}, 0.151875 \neq \frac{31}{400}$ so NOT independent	M1	Their $\mathrm{P}(M) \times$ their $\mathrm{P}(S)$ seen, accept unsimplified.
		A1	$\mathrm{P}(M), \mathrm{P}(S)$ and $\mathrm{P}(M \cap S)$ notation seen, numerical comparison and correct conclusion, WWW.
	Method 2		
	$\begin{aligned} & \mathrm{P}(M \cap S)=\frac{31}{400} \mathrm{P}(S)=\frac{135}{400} \mathrm{P}(M)=\frac{180}{400} \\ & \mathrm{P}(M \mid S)=\frac{\frac{31}{\frac{400}{45}}}{\frac{135}{400}}=\frac{31}{135}, 0.2296 \ldots \neq \frac{180}{400} \text { so NOT independent } \end{aligned}$	M1	$[\mathrm{P}(M \mid S)=] \frac{\text { their } \mathrm{P}(M \cap S)}{\text { their } \mathrm{P}(S)}$ (oe) seen, accept unsimplified.
		A1	$\mathrm{P}(M), \mathrm{P}(S)$ and $\mathrm{P}(M \cap S)$ notation seen, numerical comparison and correct conclusion, WWW.
		2	

Question	Answer	Marks	Guidance
7(b)(i)	Method $1[1-\mathrm{P}(0,1,2)$]		
	$\begin{aligned} & =1-\left({ }^{10} \mathrm{C}_{0} 0 \cdot 3^{0} 0 \cdot 7^{10}+{ }^{10} \mathrm{C}_{1} 0 \cdot 3^{1} 0 \cdot 7^{9}\right. \\ & \left.+{ }^{10} \mathrm{C}_{2} 0 \cdot 3^{2} 0 \cdot 7^{8}\right) \end{aligned}$	M1	${ }^{10} \mathrm{C}_{\mathrm{x}} \mathrm{p}^{\mathrm{x}}(1-\mathrm{p})^{10-\mathrm{x}}$ for $0<x<10,0<\mathrm{p}<1$, any p.
	$=1-(0 \cdot 028248+0 \cdot 121061+0 \cdot 233474)$	A1	Correct expression, accept unsimplified, condone omission of final bracket, condone recovery from poor notation.
	$=0.617$	A1	Accept $0.61715 \leqslant p \leqslant 0.61722$, WWW.
	Method $2[\mathrm{P}(3,4,5,6,7,8,9,10)=]$		
	$\begin{aligned} & { }^{10} \mathrm{C}_{3} 0 \cdot 3^{3} 0 \cdot 7^{7}+{ }^{10} \mathrm{C}_{4} 0 \cdot 3^{4} 0 \cdot 7^{6}+{ }^{10} \mathrm{C}_{5} 0 \cdot 3^{5} 0 \cdot 7^{5} \\ & +{ }^{10} \mathrm{C}_{6} 0 \cdot 3^{6} 0 \cdot 7^{4}+{ }^{10} \mathrm{C}_{7} 0 \cdot 3^{7} 0 \cdot 7^{3}+{ }^{10} \mathrm{C}_{8} 0 \cdot 3^{8} 0 \cdot 7^{2} \\ & +{ }^{10} \mathrm{C}_{9} 0 \cdot 3^{9} 0 \cdot 7^{1}+{ }^{10} \mathrm{C}_{10} 0 \cdot 3^{10} 0 \cdot 7^{0} \end{aligned}$	M1	${ }^{10} \mathrm{C}_{\mathrm{x}} \mathrm{p}^{\mathrm{x}}(1-\mathrm{p}){ }^{10-\mathrm{x}}$ for $0<\mathrm{x}<10,0<\mathrm{p}<1$, any p.
		A1	Correct unsimplified expression.
	$=0.617$	A1	Accept $0.61715 \leqslant p \leqslant 0.61722$, WWW.
		3	

Question	Answer	Marks	Guidance
7(b)(ii)	$\begin{aligned} & {[p=0 \cdot 3]} \\ & \text { Mean }=0 \cdot 3 \times 90=27 ; \\ & \text { variance }=0 \cdot 3 \times 90 \times 0 \cdot 7=18 \cdot 9 \end{aligned}$	B1	Correct mean and variance, allow unsimplified. Condone $\sigma=4 \cdot 347$ evaluated.
	$\mathrm{P}(X<32)=P\left(z<\frac{31.5-27}{\sqrt{18.9}}\right)$	M1	Substituting their μ and $\sigma\left(\operatorname{not} \sigma^{2}, \sqrt{ } \sigma\right.$) into the \pm standardising formula with a numerical value for ' $31 \cdot 5$ '.
		M1	Using either 31.5 or 32.5 within a \pm standardising formula with numerical values for their μ and σ (condone $\sigma^{2}, \sqrt{ } \sigma$).
	$=\Phi(1.035)$	M1	Appropriate area Φ, from standardisation formula $\mathrm{P}(z<\ldots)$ in final solution, must be probability.
	$=0 \cdot 850$	A1	Allow $0 \cdot 8495<p \leqslant 0 \cdot 85(0)$, final answer WWW.
		5	

Cambridge International AS \& A Level

MATHEMATICS
9709/51
Paper 5 Probability \& Statistics 1
May/June 2020
MARK SCHEME

Maximum Mark: 50

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks
1(a)	Prob of $4\left(\right.$ from 1,3, 3,1 or 2,2) $=\frac{3}{36}=\frac{1}{12} \quad$ AG	B1
		1
1(b)	$\text { Mean }=\frac{1}{\frac{1}{12}}=12$	B1
		1
1(c)	$\left(\frac{11}{12}\right)^{5} \times \frac{1}{12}=0.0539 \text { or } \frac{161051}{2985984}$	B1
		1
1(d)	$1-\left(\frac{11}{12}\right)^{7}$	M1
	$0.456 \text { or } \frac{16344637}{35831808}$	A1
		2

Question	Answer	Marks
2(a)	6 !	M1
	720	A1
		2
2(b)	Total number: $\frac{9!}{3!2!}(30240)$	M1
	Number with Ls together $=\frac{8!}{3!}(6720)$	M1
	$\begin{aligned} & \text { Number with Ls not together }=\frac{9!}{3!2!}-\frac{8!}{3!} \\ & =30240-6720 \end{aligned}$	M1
	23520	A1
	Alternative method for question 2(b)	
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	
	$7!\times k$ in numerator, k integer ≥ 1	M1
	$8 \times 7 \times m$ in numerator or $8 \mathrm{C} 2 \times m, m$ integer ≥ 1	M1
	3 ! in denominator	M1
	23520	A1
		4

Question	Answer	Marks
4	Scenarios: 2P 3V 2G $\quad{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3}=28 \times 6 \times 20=3360$ 2P 4V 1G $\quad{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{4}=28 \times 4 \times 15=1680$ 3P 3V 1G $\quad{ }^{8} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{3}=56 \times 4 \times 20=4480$ $4 \mathrm{P} 2 \mathrm{~V} \mathrm{1G} \quad{ }^{8} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{2}=70 \times 4 \times 15=4200$ (M1 for ${ }^{8} \mathrm{C}_{\mathrm{r}} \times{ }^{4} \mathrm{C}_{\mathrm{r}} \times{ }^{6} \mathrm{C}_{\mathrm{r}}$ with $\sum r=7$)	M1
	Two unsimplified products correct	B1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total: 13720	A1
		4

Question	Answer	Marks
5(a)	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the prob 0	B1
		2
5(b)	$0.35 \times 0.3+0.44 \times 0.8(+0)$	M1
	0.457	A1
		2

Question	Answer	Marks
5(c)	$\mathrm{P}(\text { not } \mathrm{B} \mid \text { not fruit })=\frac{\mathrm{P}\left(\mathrm{~B}^{\prime} \cap \mathrm{F}^{\prime}\right)}{\mathrm{P}\left(\mathrm{~F}^{\prime}\right)}$	M1
	$\frac{0.35 \times 0.7+0.21 \times 1}{1-\text { their }(\mathbf{b})}$	M1
	$\frac{0.455}{0.543}$ (M1 for 1 - their (b) or summing three appropriate 2-factor probabilities, correct or consistent with their tree diagram as denominator)	M1
	$0.838 \text { or } \frac{455}{543}$	A1
		4

Question	Answer	Marks
6(a)	$\mathrm{P}\left(\frac{50-54}{6.1}<z<\frac{60-54}{6.1}\right)=\mathrm{P}(-0.6557<Z<0.9836)$	M1
	Both values correct	A1
	$\begin{aligned} & \Phi(0.9836)-\Phi(-0.6557)=\Phi(0.9836)+\Phi(0.6557)-1 \\ & =0.8375+0.7441-1 \\ & \text { (Correct area) } \end{aligned}$	M1
	0.582	A1
		4

Question	Answer	Marks
6(b)	$\frac{45-\mu}{\sigma}=-0.994$	B1
	$\frac{56-\mu}{\sigma}=1.372$	B1
	One appropriate standardisation equation with μ, σ, z-value (not probability) and 45 or 56.	M1
	$11=2.366 \sigma$ (M1 for correct algebraic elimination of μ or σ from their two simultaneous equations to form an equation in one variable)	M1
	$\sigma=4.65, \mu=49.6$	A1
		5

Question	Answer	Marks
7(a)	Class widths: $10,5,15,20,10$	M1
	Frequency density $=$ frequency/their class width: $1.8,4.8,2,1,0.8$	M1
	All heights correct on diagram (using a linear scale)	A1
	Correct bar ends	B1
	Bar ends: $10.5,15.5,30.5,50.5,60.5$	B1
		5
7(b)	11-15 and 31-50	B1
	Greatest $\mathrm{IQR}=50-11=39$	B1
		2
7(c)	$\text { Mean }=\frac{18 \times 5.5+24 \times 13+30 \times 23+20 \times 40.5+8 \times 55.5}{100}=\frac{2355}{100}=23.6$	B1
	$\operatorname{Var}=\frac{18 \times 5.5^{2}+24 \times 13^{2}+30 \times 23^{2}+20 \times 40.5^{2}+8 \times 55.5^{2}}{100}-\text { mean }^{2}$	M1
	$\frac{77917.5}{100}-\text { mean }^{2}=224.57$	A1
	Standard deviation $=15.0$ (FT their variance)	A1 FT
		4

Cambridge International AS \& A Level

MATHEMATICS9709/52
Paper 5 Probability \& Statistics 1

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks
1	$\sum x-50 n=144$	B1
	$50 n+144=944$	M1
	$n=16$	A1
		3

Question	Answer	Marks
$2(\mathrm{a})$	$\frac{56}{500}$ or $\frac{14}{125}$ or 0.112	B1
$2(\mathrm{~b})$	$\mathrm{P}(\mathrm{D} \mid \mathrm{S})=\frac{\mathrm{P}(\mathrm{D} \cap \mathrm{S})}{\mathrm{P}(\mathrm{S})}=\frac{120}{280}$	$\mathbf{1}$
	$\frac{120}{280}$ or $\frac{3}{7}$	M1
		A1

Question	Answer	Marks
2(c)	$\begin{aligned} & \mathrm{P}(\text { hockey })=\frac{220}{500}=0.44 \\ & \mathrm{P}(\text { Amos or Benn })=\frac{242}{500}=0.484 \\ & \mathrm{P}(\text { hockey } \cap \mathrm{A} \text { or } \mathrm{B})=\frac{104}{500}=0.208 \\ & \mathrm{P}(\mathrm{H}) \times \mathrm{P}(\mathrm{~A} \mathrm{U} \mathrm{~B})=\mathrm{P}(\mathrm{H} \cap(\mathrm{~A} U B)) \text { if independent } \end{aligned}$	M1
	$\frac{220}{500} \times \frac{242}{500}=\frac{1331}{6250}$ so not independent	A1
		2

Question	Answer	Marks
$3(\mathrm{a})$	Median $=0.238$	B1
	$\mathrm{UQ}=0.245, \mathrm{LQ}=0.231$, $\mathrm{So} \mathrm{IQR}=0.245-0.231$	M1
	0.014	A1
		$\mathbf{3}$

Question	Answer	Marks
4(a)	$\mathrm{P}(X<25)=\mathrm{P}\left(z<\frac{25-40}{12}\right)=\mathrm{P}(z<-1.25)$	M1
	1-0.8944	M1
	0.106	A1
		3
4(b)	0.8944 divided by 3 (M1 for 1 - their (a) divided by 3)	M1
	0.298 AG	A1
		2
4(c)	0.2981 gives $z=0.53$	B1
	$\frac{h-40}{12}=0.53$	M1
	$h=46.4$	A1
		3

Question	Answer	Marks
$5(\mathrm{c})$	$\mathrm{E}(X)=\frac{2+12+21}{15}=\frac{35}{15}=\frac{7}{3}$	B1
	$\operatorname{Var}(X)=\frac{1^{2} \times 2+2^{2} \times 6+3^{2} \times 7}{15}-\left(\frac{7}{3}\right)^{2}$	M1
	$\frac{22}{45}(0.489)$	A1
		$\mathbf{3}$

Question	Answer	Marks
$6(\mathrm{a})$	$\frac{8!}{3!}$	M1
	6720	A1
		$\mathbf{2}$

Question	Answer	Marks
6(b)	$\text { Total number }=\frac{10!}{2!3!}(302400) \quad(\mathrm{A})$	B1
	With Es together $=\frac{9!}{3!}(60480)$	B1
	Es not together $=$ their $(\mathrm{A})-$ their (B)	M1
	241920	A1
	Alternative method for question 6(b)	
	$-\hat{\wedge}_{\frac{8}{3!}}^{\times \frac{9 \times 8}{2}} \bar{\wedge}^{\wedge}-{ }^{\wedge}-{ }^{\wedge}-{ }^{\wedge}-{ }^{\wedge}-{ }^{\wedge}-$	
	$8!\times k$ in numerator, k integer $\geqslant 1$, denominator $\geqslant 1$	B1
	$3!\times m$ in denominator, m integer $\geqslant 1$	B1
	Their $\frac{8!}{3!}$ Multiplied by ${ }^{9} \mathrm{C}_{2}$ (OE) only (no additional terms)	M1
	241920	A1
		4

Question	Answer	Marks
6(c)	Scenarios: $\begin{array}{ll} \text { EMM M } & { }^{5} \mathrm{C}_{0}=1 \\ \text { EMM M }_{-} & { }^{5} \mathrm{C}_{1}=5 \\ \text { EM M }_{--} & { }^{5} \mathrm{C}_{2}=10 \end{array}$	M1
	Summing the number of ways for 2 or 3 correct scenarios	M1
	Total $=16$	A1
		3

Question	Answer	Marks
7(a)	$\begin{aligned} & 1-\mathrm{P}(10,11,12) \\ & \left.=1-{ }^{12} \mathrm{C}_{10} 0.72^{10} 0.28^{2}+{ }^{12} \mathrm{C}_{11} 0.722^{11} 0.28^{1}+0.72^{12}\right] \end{aligned}$	M1
	$1-(0.19372+0.09057+0.01941)$	A1
	0.696	A1
		3
7(b)	$0.28^{3} \times 0.72=0.0158$	B1
		1

Question	Answer	Marks
7(c)	$\begin{aligned} & \text { Mean }=100 \times 0.72=72 \\ & \text { Var }=100 \times 0.72 \times 0.28=20.16 \end{aligned}$	M1
	$\mathrm{P}(\text { less than } 64)=\mathrm{P}\left(z<\frac{63.5-72}{\sqrt{20.16}}\right)$ (M1 for substituting their μ and σ into \pm standardisation formula with a numerical value for ' 63.5 ')	M1
	Using either 63.5 or 64.5 within a \pm standardisation formula	M1
	Appropriate area Φ, from standardisation formula $\mathrm{P}(z<\ldots)$ in final solution $=\mathrm{P}(z<-1.893)$	M1
	0.0292	A1
		5

Cambridge International AS \& A Level

MATHEMATICS9709/53
Paper 5 Probability \& Statistics 1

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks
1(a)	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the probability 0 .	B1
		2
1(b)	$\mathrm{P}(\mathrm{C} \mid \mathrm{E})=\frac{\mathrm{P}(\mathrm{C} \cap \mathrm{E})}{\mathrm{P}(\mathrm{E})}=\frac{0.2 \times 0.6}{0.2 \times 0.6+0.45 \times 0.1+0.35 \times 1}$	M1
	Summing three appropriate 2-factor probabilities	M1
	$\frac{0.12}{0.515}$	A1
	$0.233 \text { or } \frac{12}{515}$	A1
		4

Question	Answer	Marks
2(a)	$0.22^{3}=0.0106$	B1
		1
2(b)	$\mathrm{P}(2,3,4)={ }^{16} \mathrm{C}_{2} 0.22{ }^{2} 0.78{ }^{14}+{ }^{16} C_{3} 0.22{ }^{3} 0.78{ }^{13}+{ }^{16} C_{4} 0.22^{4} 0.78{ }^{12}$	M1
	$0.179205+0.235877+0.216221$	A1
	0.631	A1
		3

Question	Answer	Marks
3(a)	$\mathrm{P}(\mathrm{X}<21)=\mathrm{P}\left(z<\frac{21-15.8}{4.2}\right)=\Phi(1.238)$	M1
	0.892	A1
		2
3(b)	$z= \pm 0.674$	B1
	$\frac{k-15.8}{4.2}=0.674$	M1
	18.6	A1
		3

Question	Answer	Marks
5(a)	$\frac{1}{\frac{1}{4}}=4$	B1
		1
5(b)	$\frac{9}{64}(=0.141)$	B1
		1
5(c)	$\mathrm{P}(\mathrm{X}<6)=1-\left(\frac{3}{4}\right)^{5}$ (FT their probability/mean from part (a))	M1
	0.763	A1
		2
5(d)	$\begin{aligned} & \text { Mean }=80 \times 0.25=20 \\ & \operatorname{Var}=80 \times 0.25 \times 0.75=15 \end{aligned}$	M1
	$\mathrm{P}(\text { more than } 25)=\mathrm{P}\left(z>\frac{25.5-20}{\sqrt{15}}\right)$	M1
	$\mathrm{P}(z>1.42)$	M1
	1-0.9222	M1
	0.0778	A1
		5

Question	Answer	Marks
$6(\mathrm{c})$	Sum of given 11 numbers is 433000	
	Sum of 12 numbers, including new $=38500 \times 12=462000$	M1
	Difference $=$ new salary $=[\$] 29000$	M1
		A1

Question	Answer	Marks
7(a)	$\frac{9!}{2!2!}=90720$	B1
		1
7(b)	$\frac{6!}{2!}$	M1
	360	A1
		2

Question	Answer	Marks
7(c)	$2 \text { Es together }=\frac{8!}{2!}(=20160)$	M1
	Es not together $=90720-20160=70560$	M1
	$\text { Probability }=\frac{70560}{90720}$	M1
	$\frac{7}{9} \text { or } 0.778$	A1
	Alternative method for question 7(c)	
	$\begin{aligned} & -\wedge_{-} \wedge_{-} \wedge_{-} \wedge_{-}{ }^{\wedge}-{ }^{\wedge}-{ }_{-}- \\ & \frac{7!}{2!} \times \frac{8 \times 7}{2}=70560 \end{aligned}$	
	$7!\times k$ in numerator, k integer $\geqslant 1$, denominator $\geqslant 1$	M1
	Multiplying by ${ }^{8} \mathrm{C}_{2} \mathrm{OE}$	M1
	$\text { Probability }=\frac{70560}{90720}$	M1
	$\frac{7}{9} \text { or } 0.778$	A1
		4

Question	Answer	Marks
7(d)	Scenarios are:	M1
	$\text { E L _ } \quad{ }^{5} \mathrm{C}_{3} \quad 10$	
	$\text { EEL-- } \quad{ }^{5} \mathrm{C}_{2} \quad 10$	
	$\begin{array}{lll} \mathrm{E}_{-}-{ }^{5} \mathrm{C}_{4} & 5 \end{array}$	
	$\mathrm{E} \overline{\mathrm{E}}_{---}^{---}{ }^{5} \mathrm{C}_{3} \quad 10$	
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total $=35$	A1
		3

Cambridge International AS \& A Level

MATHEMATICS
 9709/51
 Paper 5 Probability \& Statistics 1
 May/June 2021
 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\begin{aligned} & \text { RRRRB }{ }^{8} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{1}=280 \\ & \text { BBBBR }{ }^{8} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{4}=8 \\ & \text { RRRRR }{ }^{8} \mathrm{C}_{5}=56 \end{aligned}$	M1	${ }^{8} \mathrm{C}_{x} \times{ }^{4} \mathrm{C}_{y}$ with $x+y=5 . x, y$ both integers, $1 \leqslant x \leqslant 5$, $0 \leqslant y \leqslant 4$ condone ${ }^{8} \mathrm{C}_{1} \times 1$
		A1	Two correct outcomes evaluated
		M1	Add 2 or 3 identified correct scenarios only (no additional terms, not probabilities)
	[Total $=$] 344	A1	WWW, only dependent on 2nd M mark
		4	SC not all (or no) scenarios identified B1 $280+8+56$ DB1 344

Question	Answer	Marks	Guidance
2	$\begin{aligned} & {\left[P\left(\left(\frac{25.2-(25.5+0.50)}{0.4}\right)<z<\left(\frac{25.2-(25.2-0.50)}{0.4}\right)\right)\right]} \\ & =P\left(-\frac{0.5}{0.4}<z<\frac{0.5}{0.4}\right) \end{aligned}$	M1	Use of \pm Standardisation formula once; no continuity correction, $\sigma^{2}, \sqrt{ } \sigma$
	$[=2 \Phi(1.25)-1]$	A1	For AWRT 0.8944 SOI
	$=2 \times 0.8944-1$	M1	Appropriate area $2 \Phi-1 \mathrm{OE}$, from final process, must be probability
	0.7888	A1	Accept AWRT 0.789
	$\begin{aligned} & \text { Number of rods }=0.7888 \times 500 \\ & =394 \text { or } 395 \end{aligned}$	B1FT	Correct or FT their 4SF (or better) probability, final answer must be positive integer, not 394.0 or 395.0 , no approximation/rounding stated, only 1 answer
		5	

Question	Answer	Marks	Guidance
3(a)	$\left[\frac{8!}{3!}\right]=6720$	B1	NFWW, must be evaluated
		1	
3(b)	${ }_{---} \mathrm{LED}_{--}: \text {With LED together: } \frac{6!}{2!}$	M1	$\frac{6!}{k}$ or $\frac{5!x 6}{k} \quad k \geqslant 1$ and no other terms
		M1	$\frac{m}{2!}, m$ an integer, $m \geqslant 5$
	360	A1	CAO
		3	
3(c)	Method using \qquad A \qquad Arrange the 6 letters RELESE $=\frac{6!}{3!}[=120]$	*M1	$\frac{6!}{3!} \times k \text { seen, } k \text { an integer }>0$
	Multiply by number of ways of placing AD in non-adjacent places $=$ their $120 \times{ }^{7} \mathrm{P}_{2}[=5040]$	*M1	$m \times n(n-1)$ or $m \times{ }^{n} C_{2}$ or $m \times{ }^{n} P_{2}, n=6,7$ or $8, m$ an integer >0
	$[\text { Probability }=] \frac{\text { their } 5040}{\text { their } 6720}$	DM1	Denominator $=$ their $\mathbf{(a)}$ or correct, dependent on at least one M mark already gained.
	$\frac{5040}{6720} \text { or } \frac{3}{4} \text { or } 0.75$	A1	
	Alternative method for Question 3(c)		
	Method using 'Total arrangements - Arrangements with A and D together': Their $6720-\frac{7!\times 2}{3!}[=5040]$	*M1	Their $6720-k, k$ a positive integer
		*M1	$(m-) \frac{7!\times k}{3!}, k=1,2$

Question	Answer	Marks	Guidance
	$[\text { Probability }=] \frac{\text { their } 5040}{\text { their } 6720}$	DM1	With denominator $=$ their $\mathbf{(a)}$ or correct, dependent on at least one M mark already gained.
	$\frac{5040}{6720} \text { or } \frac{3}{4} \text { or } 0.75$	A1	
	Alternative method for Question 3(c)		
	Method using ' 1 - Probability of arrangements with A and D together': $\frac{7!\times 2}{3!}[=1680]$	*M1	$\frac{7 \times k}{3!}, k=1,2$
	$[\text { Probability }=] \frac{\text { their } 1680}{\text { their } 6720}$	*M1	With denominator $=$ their $\mathbf{(a)}$ or correct
	$1-\frac{\text { their } 1680}{\text { their } 6720}$	DM1	$1-m, 0<m<1$, dependent on at least one M mark already gained
	$\frac{5040}{6720} \text { or } \frac{3}{4} \text { or } 0.75$	A1	
		4	

Question	Answer	Marks	Guidance
4(a)		B1	Fully correct labelled tree diagram for each pair of branches clearly identifying written and practical, pass and fail for each intersection (no additional branches)
	W1P	B1	'One written test' branch all probabilities (or \%) correct
		B1	'Two written tests' branch all probabilities (or \%) correct, condone additional branches after W2F with probabilities 1 for PF and 0 for PP
		3	
4(b)	$\begin{aligned} & {[\mathrm{P}(\mathrm{~W} 1 \mathrm{P}) \times \mathrm{P}(\mathrm{PP})+\mathrm{P}(\mathrm{~W} 1 \mathrm{~F}) \times \mathrm{P}(\mathrm{~W} 2 \mathrm{P}) \times \mathrm{P}(\mathrm{PP})]} \\ & 0.8 \times 0.3+0.2 \times 0.6 \times 0.3 \end{aligned}$	M1	Consistent with their tree diagram or correct
	$0.276 \text { or } \frac{69}{250}$	A1	
		2	
4(c)	$P(W 1 \mid P)=\frac{P(W 1 \cap \text { Practical })}{P(\text { getting place })}=\frac{0.8 \times 0.3}{\text { their }(b)}\left[=\frac{0.24}{0.276}\right]$	M1	Correct expression or FT their (b)
	$\frac{20}{23} \text { or } 0.87[0]$	A1	
		2	

PUBLISHED

PUBLISHED

Question	Answer	Marks	Guidance
5(b)	$\begin{aligned} & \text { Mean }=\left[\frac{16 \times 5+54 \times 15+78 \times 30+32 \times 50+20 \times 80}{200}\right] \\ & =\frac{80+810+2340+1600+1600}{200} \end{aligned}$	M1	Uses at least 4 midpoint attempts (e.g. 5 ± 0.5). Accept unsimplified expression, denominator either correct or their Σ frequencies
	$\left[\frac{6430}{200}=\right] 32 \frac{3}{20}$ or 32.15	A1	Accept 32.2
		2	
5(c)	A value in correct UQ (40-60) - a value in correct LQ (10-20)	M1	
	Greatest possible value is $60-10=50$	A1	Condone 49.9
		2	

Question	Answer	Marks	Guidance
6(a)	$\begin{aligned} & 1-\mathrm{P}(10,11,12)=1-\left({ }^{12} \mathrm{C}_{10} 0.6^{10} 0.4^{2}+{ }^{12} \mathrm{C}_{11} 0.6^{11} 0.4^{1}+{ }^{12} \mathrm{C}_{12} 0.6^{12} 0.4^{0}\right) \\ & {[=1-(0.063852+0.017414+0.002176)]} \end{aligned}$	M1	One term: ${ }^{12} \mathrm{C}_{x} \mathrm{p}^{x}(1-\mathrm{p})^{12-x}$ for $0<x<12$, any p allowed.
		A1	Correct unsimplified expression, or better.
	$[1-0.083443]=0.917$	A1	AWRT
	Alternative method for Question 6(a)		
	$\begin{aligned} & \mathrm{P}(0,1,2,3,4,5,6,7,8,9)={ }^{12} \mathrm{C}_{0} 0.6^{0} 0.4^{12}+{ }^{12} \mathrm{C}_{1} 0.6^{1} 0.4^{11}+\ldots \ldots \ldots . .{ }^{12} \mathrm{C}_{9} 0.6^{9} \\ & 0.4^{3} \\ & {[=0.000016777+0.00030199+0.0024914+0.012457+0.042043+} \\ & 0.10090+0.17658+0.22703+0.21284+0.14189] \end{aligned}$	M1	One term: ${ }^{12} \mathrm{C}_{x} \mathrm{p}^{x}(1-\mathrm{p}){ }^{12-x}$ for $0<x<12$, any p allowed.
		A1	Correct unsimplified expression with at least the first two and last terms
	0.917	A1	WWW, AWRT
		3	

Question	Answer	Marks	Guidance
6(b)	$\begin{aligned} & {[\text { Mean }=] 0.6 \times 150[=90] ;} \\ & {[\text { Variance }=] 0.6 \times 150 \times 0.4[=36]} \end{aligned}$	B1	Correct mean and variance. Accept evaluated or unsimplified
	$P(X<81)=P\left(Z<\frac{80.5-90}{6}\right)$	M1	Substituting their mean and variance into \pm standardisation formula (with a numerical value for 80.5), allow $\sigma^{2}, \sqrt{ } \sigma$, but not $\mu \pm 0.5$
		M1	Using continuity correction 80.5 or 81.5
	$\Phi(-1.5833)=1-0.9433$	M1	Appropriate area Φ, from final process, must be probability
	0.0567	A1	AWRT
		5	
6(c)	$n p=90, n q=60$ both greater than 5	B1	At least $n q$ evaluated and statement >5 required
		1	

Question	Answer	Marks	Guidance
7 7(a)	$P(X=3)=\frac{4}{7} \times \frac{3}{6} \times \frac{3}{5}$	M1	$\frac{m}{7} \times \frac{n}{6} \times \frac{o}{5}$ used throughout. condone use of $\frac{1}{2}$

PUBLISHED

Cambridge International AS \& A Level

MATHEMATICS
 9709/52
 Paper 5 Probability \& Statistics 1
 May/June 2021
 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	6	B1	WWW
		1	
1(b)	$\left(\frac{5}{6}\right)^{3} \frac{1}{6}+\left(\frac{5}{6}\right)^{4} \frac{1}{6}+\left(\frac{5}{6}\right)^{5} \frac{1}{6}+\left(\frac{5}{6}\right)^{6} \frac{1}{6}$	M1	$p^{3}(1-p)+p^{4}(1-p)+p^{5}(1-p)+p^{6}(1-p), 0<p<1$
	0.300 (0.2996...)	A1	At least 3s.f. Award at most accurate value.
	Alternative method for Question 1(b)		
	$\left(\frac{5}{6}\right)^{3}-\left(\frac{5}{6}\right)^{7}$	M1	$p^{3}-p^{7}, 0<p<1$
	0.300 (0.2996...)	A1	At least 3s.f. Award at most accurate value.
		2	
1(c)	$1-\left(\frac{5}{6}\right)^{9}$	M1	$1-p^{\mathrm{n}}, 0<p<1, n=9,10$
	0.806	A1	
	Alternative method for Question 1(c)		
	$\frac{1}{6}+\frac{1}{6}\left(\frac{5}{6}\right)+\frac{1}{6}\left(\frac{5}{6}\right)^{2}+\cdots+\frac{1}{6}\left(\frac{5}{6}\right)^{8}$	M1	$\begin{aligned} & p+p(1-p)+p(1-p)^{2}+p(1-p)^{3}+p(1-p)^{4}+p(1-p)^{5}+p(1 \\ & -p)^{6}+p(1-p)^{7}+p(1-p)^{8}\left(+p(1-p)^{9}\right), 0<p<1 \end{aligned}$ As per answer for minimum terms shown
	0.806	A1	
		2	

Question	Answer	Marks	Guidance
2	$\begin{aligned} & {\left[\begin{array}{l} \left.P(X>1.1)=\frac{72}{2000}(=0.036)\right] \\ z= \pm 1.798 \end{array}\right.} \end{aligned}$	B1	$1.79<z \leqslant 1.80,-1.80 \leqslant z<-1.79$ seen
	$\frac{1.1-1.04}{\sigma}=1.798$	B1	1.1 and 1.04 substituted in \pm standardisation formula, allow continuity correction, not σ^{2} or $\sqrt{ } \sigma$
	$\left[\frac{0.06}{\sigma}=1.798\right]$	M1	Equate their \pm standardisation formula to a z-value and to solve for the appropriate area leading to final answer (expect $\sigma<0.5$). $\left(\text { Accept } \pm \frac{0.06}{\sigma}=z-\text { value }\right)$
	$\sigma=0.0334$	A1	$0.03335 \leq \sigma \leq 0.0334$. At least 3 3s.f.
		4	

Question	Answer	Marks	Guidance
3(a)	$\begin{aligned} & \mathrm{P}(\text { not late })=0.4 \times 0.45+0.35 \times 0.3+0.25 \times(1-x) \\ & \text { or } \\ & \mathrm{P}(\text { late })=0.4 \times 0.55+0.35 \times 0.7+0.25 x \end{aligned}$	M1	$\begin{aligned} & 0.4 \times p+0.35 \times q+0.25 \times r, \\ & p=0.45,0.55, q=0.3,0.7 \text { and } r=(1-x), x \end{aligned}$
	$\begin{aligned} & 0.18+0.105+0.25(1-x)=0.48 \\ & \text { or } \\ & 0.22+0.245+0.25 x=0.52 \end{aligned}$	A1	Linear equation formed using sum of 3 probabilities and 0.48 or 0.52 as appropriate. Accept unsimplified.
	$x=0.22$	A1	Final answer
		3	
3(b)	$[P(\text { train } \mid \text { lato })=P(\text { train } \cap \text { late })]$	B1	0.35×0.7 or 0.245 seen as numerator of fraction
	$=\frac{0.35 \times 0.7}{1-0.48} \text { or } \frac{0.35 \times 0.7}{0.4 \times 0.55+0.35 \times 0.7+0.25 \times \text { their } 0.22}$	M1	P (late) seen as a denominator with their probability as numerator (Accept $\frac{\text { their } p}{0.52}$ or $\frac{\text { their } p}{0.22+0.245+0.25 \times \text { their } 0.22}$)
	$=0.471 \text { or } \frac{49}{104}$	A1	
		3	

Question	Answer	Marks	Guidance
5(a)	$\left[(0.7)^{3}=\right] 0.343$	B1	Evaluated WWW
	Alternative method for Question 5(a)		
	$\left[(0.15)^{3}+{ }^{3} \mathrm{C}_{1}(0.15)^{2}(0.55)+{ }^{3} \mathrm{C}_{2}(0.15)(0.55)^{2}+(0.55)^{3}=\right] 0.343$	B1	Evaluated WWW
		1	
5(b)	$\begin{aligned} & 1-\left(0.85^{9}+{ }^{9} \mathrm{C}_{1} 0.15^{1} 0.85^{8}+{ }^{9} \mathrm{C}_{2} 0.15^{2} 0.85^{7}\right) \\ & {[1-(0.231617+0.367862+0.259667)]} \end{aligned}$	M1	One term: ${ }^{9} \mathrm{C}_{\mathrm{x}} \mathrm{p}^{\mathrm{x}}(1-\mathrm{p})^{9-\mathrm{x}}$ for $0<\mathrm{x}<9$, any $0<p<1$
		A1	Correct expression, accept unsimplified.
	0.141	A1	$0.1408 \leqslant$ ans $\leqslant 0.141$, award at most accurate value.
	Alternative method for Question 5(b)		
	$\begin{aligned} & { }^{9} \mathrm{C}_{3} 0.15^{3} 0.85^{6}+{ }^{9} \mathrm{C}_{4} 0.15^{4} 0.85^{5}+{ }^{9} \mathrm{C}_{5} 0.15^{5} 0.85^{4}+{ }^{9} \mathrm{C}_{6} 0.15^{6} 0.85^{3}+ \\ & { }^{9} \mathrm{C}_{7} 0.15^{7} 0.85^{2}+{ }^{9} \mathrm{C}_{8} 0.15^{8} 0.85+0.15^{9} \end{aligned}$	M1	One term: ${ }^{9} \mathrm{C}_{\mathrm{x}} \mathrm{p}^{\mathrm{x}}(1-\mathrm{p})^{9-\mathrm{x}}$ for $0<\mathrm{x}<9$, any $0<p<1$
		A1	Correct expression, accept unsimplified.
	0.141	A1	$0.1408 \leqslant$ ans $\leqslant 0.141$, award at most accurate value.
		3	

Question	Answer	Marks	Guidance
5(c)	$\begin{aligned} & \text { Mean }=[60 \times 0.15=] 9 \\ & \text { Variance }=[60 \times 0.15 \times 0.85=] 7.65 \end{aligned}$	B1	Correct mean and variance, allow unsimplified. ($2.765 \leq \sigma \leq 2.77$ imply correct variance)
	$[(X \geq 12)=] P\left(Z>\frac{11.5-9}{\sqrt{7.65}}\right)$	M1	Substituting their mean and variance into \pm standardisation formula (any number for 11.5), not σ^{2} or $\sqrt{ } \sigma$
		M1	Using continuity correction 11.5 or 12.5 in their standardisation formula.
	$1-\Phi(0.9039)=1-0.8169$	M1	Appropriate area Φ, from final process, must be probability.
	0.183	A1	Final AWRT
		5	

Question		Answer	Marks	Guidance
6(a)	$\frac{8!}{2!3!}$		M1	$\frac{8!}{k \bowtie m!} k=1$ or $2, m=1$ or $3, \operatorname{not} k=m=1$ no additional terms
	3360		A1	
			2	

Question	Answer	Marks	Guidance
6 (b)	Method 1 Arrangements Rs at ends - Arrangements Rs at ends and Os together		
	$[\text { Os not together }=] \frac{6!}{3!}-4!$	M1	$\frac{6!}{k!}-m, 1 \leqslant k \leqslant 3, m$ an integer, condone $2 \times\left(\frac{6!}{k!}\right)-m$.
		M1	$w-4$! or $w-24, w$ an integer Condone $w-2 \times 4$!
	96	A1	
	Method 2 identified scenarios R_{\ldots} _ R , Arrangement No Os together + 2 Os and a single O		
	${ }^{4} \mathrm{C}_{3} \times 3!+{ }^{4} \mathrm{C}_{2} \times 2 \times 3!$	M1	${ }^{4} \mathrm{C}_{3} \times 3!+r$ or $4 \times 3!+r$ or ${ }^{4} \mathrm{P}_{3} \times 3!+r, r$ an integer. Condone $2 \times{ }^{4} \mathrm{C}_{3} \times 3!+r .2 \times 4 \times 3!+r$ or $2 \times{ }^{4} \mathrm{P}_{3} \times 3!+r$.
		M1	$q+{ }^{4} \mathrm{C}_{2} \times 3!\times k$ or $q+{ }^{4} \mathrm{P}_{2} \times 3!\times k, k=1,2, q$ an integer
	$[24+72=] 96$	A1	
		3	
6(c)	Method 1 Identified scenarios		
	$\text { OORR } \quad{ }^{3} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{2} \times\left[{ }^{3} \mathrm{C}_{0}\right]=3 \times 1=3$	B1	Outcomes for 2 identifiable scenarios correct, accept unsimplified.
	$\begin{aligned} & \text { OOR_ } \quad{ }^{3} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1}=3 \times 2 \times 3=18 \\ & \text { OR_- } \\ & { }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{2}=3 \times 2 \times 3=18 \\ & \text { OOOR } \end{aligned}{ }^{3} \mathrm{C}_{3} \times{ }^{2} \mathrm{C}_{1} \times\left[{ }^{3} \mathrm{C}_{0}\right]=1 \times 2=2 \mathrm{l}=2$	M1	Add 4 or 5 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.
	Total 50	A1	All correct and added
	$\text { Probability }=\frac{50}{{ }^{8} C_{4}}$	M1	$\frac{\text { their }{ }^{\prime} 50^{\prime}}{{ }^{8} C_{4}}$, accept numerator unevaluated

Question	Answer	Marks	Guidance
6(c) cont'd	$\frac{50}{70} \text { or } 0.714$	A1	
	Method 2 Identified outcomes		
	ORTM ${ }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1}=6$ ORTW ${ }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1}=6$	B1	Outcomes for 5 identifiable scenarios correct, accept unsimplified.
	ORMW ${ }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1}=6$ ORRM ${ }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{2}=3$ ORRW ${ }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{2}=3$ ORRT ${ }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{2}=3$ OROR ${ }^{3} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{2}=3$ OROT ${ }^{3} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{1}=6$ OROM ${ }^{3} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{1}=6$ OROW ${ }^{3} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{1}=6$ OROO ${ }^{3} \mathrm{C}_{3} \times{ }^{2} \mathrm{C}_{1}=2$	M1	Add 9, 10 or 11 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.
	Total 50	A1	All correct and added
	$\text { Probability }=\frac{50}{{ }^{8} C_{4}}$	M1	$\frac{\text { their }{ }^{\prime} 50^{\prime}}{{ }^{8} C_{4}}$, accept numerator unevaluated.
	$\frac{50}{70} \text { or } 0.714$	A1	
		5	

Question	Answer	Marks	Guidance
7(d)	$\begin{aligned} & {\left[\Sigma_{11}=2132\right.} \\ & \Sigma_{15}=191.2 \times 15=2868 \end{aligned}$	B1	Both Σ_{11} and Σ_{15} found. Accept unevaluated.
	their $2868=$ their $2132+(180+185+190)+h$	M1	Forming an equation for the height using their Σ_{11} and Σ_{15}.
	181 (cm)	A1	
	Alternative method for Question 7(d)		
	$\begin{aligned} & {\left[\Sigma_{15}=191.2 \times 15=2868\right.} \\ & \left.\Sigma_{15}=2687+h\right] \end{aligned}$	B1	Σ_{15} found using the mean and raw data methods. Accept unevaluated.
	their $2868=$ their $2687+h$	M1	Forming an equation for the height using their Σ_{15} expressions.
	181 (cm)	A1	
	Alternative method for Question 7(d)		
	$\begin{aligned} & {\left[\Sigma_{15}=2687+h\right.} \\ & \left.\frac{\Sigma_{15}}{15}=191.2\right] \end{aligned}$	B1	Σ_{15} found using raw data method and statement on calculating new mean. Accept unevaluated.
	$\frac{\text { their } 2687+h}{15}=191.2$	M1	Forming an equation for the height using their Σ_{15} expressions
	181 (cm)	A1	
		3	N.B. All methods can be presented as a logical numerical argument which can be condoned if clear.

Cambridge International AS \& A Level

MATHEMATICS

9709/53
Paper 5 Probability \& Statistics 1
May/June 2021
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
$1(\mathrm{a})$	60	B1	Accept 60 or 61. No decimals
			$\mathbf{1}$

Question	Answer	Marks	Guidance
2	$p+p+0.1+q+q=1$	B1	Sum of probabilities $=1$
	$0.1+2 q=3(2 p)$	B1	Use given information
	Attempt to solve two correct equations in p and q	M1	Either use of Substitution method to form a single equation in either p or q and finding values for both unknowns. Or use of Elimination method by writing both equations in same form (usually $a p+b q=c$) and + or - to find an equation in one unknown and finding values for both unknowns.
	$p=\frac{1}{8} \text { or } 0.125 \text { and } q=\frac{13}{40} \text { or } 0.325$	A1	CAO, both WWW
		4	

Question	Answer	Marks	Guidance
$3(\mathrm{a})$	Mean height $=\frac{\Sigma x+\Sigma y}{6+11}=\frac{1050+1991}{6+11}=\frac{3041}{17}$	$\mathbf{M 1}$	Use of appropriate formula with values substituted, accept unsimplified.
	178.9	A1	Allow $178.88,178 \frac{15}{17}, 179$
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
$3(\mathrm{~b})$	$\frac{\Sigma x^{2}+\Sigma y^{2}}{6+11}=\frac{193700+366400}{6+11}$	$\mathbf{M 1}$	Use of appropriate formula with values substituted, accept unsimplified.
	$\operatorname{Sd}^{2}=\frac{560100}{17}-$ their $178.88^{2}[=948.289]$	M1	Appropriate variance formula using their mean ${ }^{2}$, accept unsimplified expression.
	Standard deviation $=30.8$	A1	Accept 30.7
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(a)	[Possible cases: $112,121,211]$$\text { Probability }=\left(\frac{1}{6}\right)^{3} \times 3$	M1	$\left(\frac{1}{6}\right)^{3} \times k$, where k is an integer.
		M1	Multiply a probability by 3 , not + , - or \div
	$\frac{1}{72}$	A1	Accept $\frac{3}{216}$ or $0.013 \dot{8}$ or 0.0139
		3	
4(b)	$\mathrm{P}(18)=\left(\frac{1}{6}\right)^{3}\left[=\frac{1}{216}\right]$	B1	
	$\mathrm{P}(18 \text { on } 5 \text { th throw })=\left(\frac{215}{216}\right)^{4} \times \frac{1}{216}$	M1	$(1-p)^{4} p, 0<$ their $p<1$
	0.00454	A1	
		3	

Question	Answer	Marks	Guidance
5(a)	$z_{1}=\frac{4-\mu}{\sigma}=-1.378$	B1	$1.378 \leqslant z_{1} \leq 1.379$ or $-1.379 \leqslant z_{1} \leqslant-1.378$
	$z_{2}=\frac{10-\mu}{\sigma}=0.842$	B1	$0.841 \leqslant z_{2} \leqslant 0.842$ or $-0.842 \leqslant z_{2} \leqslant-0.841$
	Solve to find at least one unknown: $\frac{4-\mu}{\sigma}=-1.378$	M1	Use of \pm standardisation formula once with μ, σ, a z-value and 4 or 10 , allow continuity correction, not σ^{2} or $\sqrt{\sigma}$
	$\frac{10-\mu}{\sigma}=0.842$	M1	Use either the elimination method or the substitution method to solve two equations in μ and σ.
	$\sigma=2.70 \mu=7.72$	A1	$2.70 \leqslant \sigma \leqslant 2.717 .72 \leqslant \mu \leqslant 7.73$
		5	
5(b)	$\Phi(2)-\Phi(-2)=2 \Phi(2)-1$	M1	Identifying 2 and -2 as the appropriate z-values
	$2 \times$ their $0.9772-1$	B1	Calculating the appropriate area from stated phis of z-values which must be \pm the same number
	0.9544 or 0.9545	A1	Accept AWRT 0.954
	$\begin{aligned} & 0.9544 \times 800=763.52 \\ & 763 \text { or } 764 \end{aligned}$	B1 FT	FT their 4SF (or better) probability, final answer must be positive integer
		4	

Question	Answer	Marks	Guidance
6(a)	$\frac{11!}{2!3!}$	M1	11! alone on numerator - must be a fraction. $k!\times m!$ on denominator, $k=1,2, m=1,3,1$ can be implied but cannot both $=1$. No additional terms
	3326400	A1	Exact value only
		2	
6(b)	$8!=40320$	B1	Evaluate, exact value only
		1	
6(c)	$\frac{9!}{3!} \times 7$	M1	$\frac{9!}{3!} \times k \text { seen, } k \text { an integer }>0, \text { no }+,- \text { or } \div$
		M1	$7 \times$ an integer seen in final answer, no,+- or \div
	423360	A1	Exact value only
	Alternative method for Question 6(c)		
	${ }^{9} \mathrm{C}_{3} \times 7!\left(\times \frac{3!}{3!}\right)$	M1	$9 \mathrm{C} 3 \times k$ seen, k an integer >0, no + or -
		M1	$7!\times k$ seen, , k an integer >0, no + or -
	423360	A1	Exact value only but there must be evidence of $\times \frac{3!}{3!}$

Question	Answer	Marks	Guidance
6(c)	Alternative method for Question 6(c)		
	$3 \times 7 \times \frac{8!}{2!}$	M1	$3 \times \frac{8!}{2!} \times k$ seen, k an integer >0, no + or -
		M1	$7 \times$ an integer seen in final answer, no,+- or \div
	423360	A1	Exact value only
	Alternative method for Question 6(c)		
	$7 \times \frac{2}{11} \times \frac{9}{10} \times \frac{8}{9} \times \frac{7}{8} \times \frac{1}{7} \times$ total no. of arrangements	M1	Product of correct five fractions $\times k$ seen, k an integer >0, no + or -
		M1	```7\times'total no of arrangements' }\timesk\mathrm{ seen, }k\mathrm{ an integer }>0 no + or -```
	423360	A1	Exact value only
	Alternative method for Question 6(c)		
	No E between the Rs $-\frac{{ }^{6} C_{3} \times 3!\times 7!}{3!}=100800$ 1E between the Rs $\quad-\frac{{ }^{6} C_{2} \times 3!\times 7!}{2!}=226800$ 2Es between the Rs $\quad-{ }^{6} C_{1} \times 3!\times 7!=90720$ 3Es between the Rs $\quad-7!=5040$	M1	Finding the correct number of ways for no, 1 or 2 Es between the Rs, accept unsimplified.
		M1	Adding the number of ways for 3 or 4 correct scenarios
	$[$ Total $=7!\times(20+45+18+1)=7!\times 84=] 423360$	A1	CAO
		3	

Question	Answer	Marks	Guidance
6(d)	$\begin{array}{ll} \text { EER } \overline{R E}^{-} & { }^{6} \mathrm{C}_{2}=15 \\ \text { EERR } & { }^{6} \mathrm{C}_{1}=6 \\ \text { EEER } & { }^{6} \mathrm{C}_{1}=6 \\ \text { EEER } & { }^{6} \mathrm{C}_{0}=1 \end{array}$	M1	Identifying four correct scenarios only.
		B1	Correct number of selections unsimplified for 2 or more scenario.
		M1	Adding the number of selections for 3 or 4 identified correct scenarios only, accept unsimplified. ${ }^{3} \mathrm{C}_{x} \times{ }^{2} \mathrm{C}_{y} \times{ }^{6} \mathrm{C}_{z}, x+y+z=5$ correctly identifies x Es and y Rs
	[Total $=$] 28	A1	WWW, only dependent upon 2nd M mark.
	Alternative method for Question 6(d) - Fixing EER first. No other scenarios can be present anywhere in solution.		
	EER ${ }^{\wedge} \wedge={ }^{8} \mathrm{C}_{2}$	M1	${ }^{8} \mathrm{C}_{x}$ seen alone or ${ }^{8} \mathrm{C}_{x} \times k, k=1$ or $2,0<x<8$ Condone ${ }^{8} \mathrm{P}_{x}$ or ${ }^{8} \mathrm{P}_{x} \times k, k=1$ or $2,0<x<8$
		B1	${ }^{8} \mathrm{C}_{2} \times k, k=1$ or 2 OE
		M1	${ }^{8} \mathrm{C}_{2} \times k, k=1 \mathrm{OE}$ and no other terms
	[Total =] 28	A1	Value stated
		4	

Question	Answer	Marks	Guidance
7(a)(i)	$\frac{40}{800} \text { or } \frac{1}{20} \text { or } 0.05$	B1	
		1	
7(a)(ii)	$\frac{177}{223+177+40}$	M1	Their $223+177+40$ seen as denominator of fraction in the final answer, accept unsimplified
	$\frac{177}{440}$ or 0.402	A1	CAO
	Alternative method for Question 7(a)(ii)		
	$P(\mathrm{G} \mid \mathrm{S})=\frac{P(G \cap S)}{P(S)}=\frac{\frac{177}{800}}{\frac{223+177+40}{800}}=\frac{\frac{177}{800}}{\frac{440}{800}}=\frac{\frac{177}{800}}{\frac{11}{20} \text { or } 0.55}$	M1	Their $\mathrm{P}(S)$ seen as denominator of fraction in the final answer, accept unsimplified
	$\frac{177}{440} \text { or } 0.402$	A1	CAO
		2	
7(b)(i)	$\begin{aligned} & \mathrm{P}(0,1,2)= \\ & { }^{10} \mathrm{C}_{0}(0.35)^{0}(0.65)^{10}+{ }^{10} \mathrm{C}_{1}(0.35)^{1}(0.65)^{9}+{ }^{10} \mathrm{C}_{2}(0.35)^{2}(0.65)^{8} \end{aligned}$	M1	One term: ${ }^{10} \mathrm{C}_{x} p^{x}(1-p)^{10-x}$ for $0<x<10$, any $0<p<1$
	$0.013463+0.072492+0.17565$	A1	Correct unsimplified expression, or better
	0.262	A1	
		3	

Question	Answer	Marks	Guidance
7(b)(ii)	$\begin{aligned} & \text { Mean }=120 \times 0.35[=42] \\ & \text { Variance }=120 \times 0.35 \times 0.65[=27.3] \end{aligned}$	B1	Correct mean and variance seen, allow unsimplified
	$\mathrm{P}(X>32)=\mathrm{P}\left(Z>\frac{32.5-42}{\sqrt{27.3}}\right)=\mathrm{P}(Z>-1.818)$	M1	Substituting their mean and variance into \pm standardisation formula (any number), condone σ^{2} or $\sqrt{ } \sigma$
		M1	Using continuity correction 31.5 or 32.5
	$\Phi(1.818)$	M1	Appropriate area Φ, from final process, must be probability
	0.966	A1	$0.965 \leqslant p \leqslant 0.966$
		5	

Cambridge International A Level

MATHEMATICS	$9709 / 51$
Paper 5 Probability \& Statistics 1	October/November 2020
MARK SCHEME	

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees)
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

PUBLISHED

Question	Answer								Marks	Guidance
1(a)			Red						M1	Complete outcome space or or listing A and B outcomes or listing $\mathrm{A} \cap \mathrm{B}$ outcomes
			1	2	3	4	5	6		
	$\stackrel{0}{\overline{\mid c}}$	1	2	3	4	5	6	7		
		2	3	4	5	6	7	8		
		3	4	5	6	7	8	9		
		4	5	6	7	8	9	10		
		5	6	7	8	9	10	11		
		6	7	8	9	10	11	12		
	$\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\frac{5}{36}$								A1	With evidence
									2	

PUBLISHED

Question	Answer	Marks	Guidance
1(b)	$\mathrm{P}(\mathrm{~A}) \times \mathrm{P}(\mathrm{~B})=\frac{1}{3} \times \frac{10}{36}$	M1	Their $\frac{1}{3} \times$ their $\frac{10}{36}$ seen
	$\frac{5}{54} \neq \frac{5}{36}$ so not independent	A1	$\frac{5}{54}, \frac{5}{36}, \mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$ and $\mathrm{P}(\mathrm{A} \cap B)$ seen in workings and correct conclusion stated Condone $\frac{5}{36}$ being stated in (a)
	Alternative method for question 1(b)		
	$\begin{aligned} & \mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\mathrm{P}(\mathrm{~B}) \\ & \mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~A})}=\frac{\frac{5}{36}}{\frac{1}{3}} \end{aligned}$	M1	$\mathrm{OE}, \frac{\text { their } \mathrm{l}(\mathrm{a})}{\text { their } \mathrm{P}(\mathrm{~A})} \text { seen }$
	$\frac{5}{12} \neq \frac{5}{18}$ so not independent	A1	$\mathrm{P}(\mathrm{A} \mid \mathrm{B}), \mathrm{P}(\mathrm{B}), \frac{5}{12}, \frac{5}{18}$ seen in workings and correct conclusion stated Condone $\frac{5}{18} \equiv \frac{10}{36}$ being identified in (a)
		2	

PUBLISHED

Question	Answer	Marks	Guidance
2(a)	$\begin{aligned} & 0.6 \times 0.7+0 \cdot 4(1-x)=0.58 \\ & \equiv 0.42+0 \cdot 4(1-x)=0.58 \end{aligned}$	M1	Equation of form $0.6 \times a+0.4 \times b=0.58$; $a=0 \cdot 3,0 \cdot 7, \mathrm{~b}=x,(1-x)$
		B1	Single correct product seen, condone $0 \cdot 42$, in an equation of appropriate form
	$x=0 \cdot 6$	A1	
	Alternative method for question 2(a)		
	$\begin{aligned} & 0 \cdot 6 \times 0 \cdot 3+0 \cdot 4 x=0 \cdot 42 \\ & \equiv 0 \cdot 18+0 \cdot 4 x=0 \cdot 42 \end{aligned}$	M1	Equation of form $0.6 \times a+0.4 \times b=0.42$; $a=0 \cdot 3,0 \cdot 7, \mathrm{~b}=x,(1-x)$
		B1	Single correct product seen, condone $0 \cdot 18$, in an equation of appropriate form
	$x=0.6$	A1	
		3	
2(b)	$(0.6 \times 0.3)^{2}$	M1	$(a \times b)^{2}, a=0 \cdot 6,0 \cdot 4$ and $b=0 \cdot 7,0 \cdot 3, x,(1-x)$ or $0 \cdot 18^{2}$, alone.
	0.0324	A1	
		2	
3(a)	$\mathrm{P}(\mathrm{X}>6)=0.75^{6}$	M1	$p^{\mathrm{n}}, n=6,7 \quad 0<p<1$
	$0.178, \frac{729}{4096}$	A1	0.17797...
		2	

PUBLISHED

Question	Answer	Marks	Guidance
4(b)	$\mathrm{P}(2 \mid \text { even })=\frac{\frac{5}{16}}{\frac{6}{16}}$	M1	$\frac{\text { their } \mathrm{P}(2)}{\text { their } \mathrm{P}(2)+\text { their } \mathrm{P}(4)}$ seen or correct outcome space.
	$\frac{5}{6} \text { or } 0 \cdot 833$	A1	
		2	
5(a)	$\begin{aligned} & \mathrm{P}(\mathrm{X}>4.2)=\mathrm{P}\left(z>\frac{4.2-3.5}{0.9}\right) \\ & =\mathrm{P}(z>0.7778) \end{aligned}$	M1	Using \pm standardisation formula, no $\sqrt{\sigma}$ or σ^{2}, continuity correction
	$1-0.7818$	M1	Appropriate area Φ, from standardisation formula $\mathrm{P}(z>\ldots)$ in final solution
	$0 \cdot 218$	A1	
		3	
5(b)	$z=-1.282$	B1	± 1.282 seen (critical value)
	$\frac{t-3.5}{0.9}=-1.282$	M1	An equation using \pm standardisation formula with a z-value, condone $\sqrt{\sigma}, \sigma^{2}$ and continuity correction
	$t=2.35$	A1	AWRT, only dependent on M mark
		3	

Question	Answer	Marks	Guidance
5(c)	$\begin{aligned} & \mathrm{P}(2.8<\mathrm{X}<4.2)=1-2 \times \text { their } \mathbf{5}(\mathbf{a}) \\ & \equiv 2(1-\text { their } \mathbf{5 (a)})-1 \\ & \equiv 2(0 \cdot 5-\text { their } \mathbf{5 (a)}) \\ & =0.5636 \end{aligned}$	B1 FT	FT from their 5(a) <0.5 or correct Accept unevaluated probability OE Accept 0.564
	Number of days $=365 \times 0.5636=205 \cdot 7$	M1	$365 \times$ their p
	So, 205 (days)	A1 FT	Accept 205 or 206 , not $205 \cdot 0$ or $206 \cdot 0$ no approximation/ rounding stated FT must be an integer value
	Alternative method for question 5(c)		
	$\begin{aligned} & \mathrm{P}\left(\frac{2.8-3.5}{0.9}<z<\frac{4.2-3.5}{0.9}\right) \\ & =\Phi(0.7778)-(1-\Phi 0.7778) \\ & =0.7818-(1-0.7818) \\ & =0.5636 \end{aligned}$	B1	$0.5635<p \leqslant 0.564$ OE
	Number of days $=365 \times 0.5636=205 \cdot 7$	M1	$365 \times$ their p
	So, 205 (days)	A1 FT	Accept 205 or 206 , not $205 \cdot 0$ or $206 \cdot 0$ no approximation/ rounding stated FT must be an integer value
		3	

PUBLISHED

Question	Answer	Marks	Guidance
6(c)	Frequencies: 1236582816	B1	Correct frequencies seen
	Mean $=\frac{10 \times 12+25 \times 36+35 \times 58+50 \times 28+80 \times 16}{150}$	B1	At least 4 correct midpoints seen and used
	$\frac{120+900+2030+1400+1280}{150}$	M1	Correct formula with their midpoints (not upper boundary, lower boundary, class width or frequency density).
	$38.2,38 \frac{1}{5}$	A1	
	$\begin{aligned} & \text { Variance }=\frac{12 \times 10^{2}+36 \times 25^{2}+58 \times 35^{2}+28 \times 50^{2}+16 \times 80^{2}}{150}-\text { mean }^{2} \\ & =\frac{1200+22500+71050+70000+102400}{150}-\text { mean }^{2} \end{aligned}$	M1	Substitute their midpoints and frequencies (condone use of cumulative frequency) in correct variance formula, must have '- their mean ${ }^{2}$,
	$($ Standard deviation $=\sqrt{321.76})=17.9$	A1	
		6	
7(a)	$\frac{8!}{2!}$	M1	$\frac{8!}{k} \equiv \frac{7!\times 8}{k}$, where $k \in \mathbb{N}, \frac{a!}{2(!)}$, where $a \in \mathbb{N}$
	20160	A1	
		2	

Question	Answer	Marks	Guidance
7(b)	Total number of ways: $\frac{10!}{2!3!}(=302400)(\mathrm{A})$	B1	Accept unsimplified
	With Ps together: $\frac{9!}{3!}(=60480)(B)$	B1	Accept unsimplified
	With Ps not together: $302400-60480$	M1	$\frac{10!}{m}-\frac{9!}{n}, m, n$ integers or $(\mathrm{A})-(\mathrm{B})$ if clearly identified
	241920	A1	
	Alternative method for question 7(b)		
	$\frac{8!}{3!}$	B1	$k \times 8$! in numerator, k a positive integer, no \pm
		B1	$m \times 3!$ in denominator, m a positive integer, no \pm
	$\times \frac{9 \times 8}{2}$	M1	Their $\frac{8!}{3!}$ multiplied by ${ }^{9} \mathrm{C}_{2}$ or ${ }^{9} \mathrm{P}_{2}$ no additional terms
	241920	A1	Exact value, WWW
		4	

Question	Answer	Marks	Guidance
7(c)	$\begin{aligned} & \text { Probability }=\frac{\text { Number of ways Es at beginning and end }}{\text { Total number of ways }} \\ & \text { Probability }=\frac{\frac{8!}{2!}}{\frac{10!}{2!\times 3!}}=\frac{20160}{302400} \end{aligned}$	M1	$\frac{\left(\frac{8!}{k!}\right)}{\frac{10!}{k!l!}} 1 \leqslant k, l \in \quad \mathbb{N} \leqslant 3$, FT denominator from $7(\mathbf{b})$ or correct
	$\frac{1}{15}, 0 \cdot 0667$	A1	
	Alternative method for question 7(c)		
	$\text { Probability }=\frac{3}{10} \times \frac{2}{9}$	M1	$\frac{a}{10} \times \frac{a-1}{9} a=3,2$
	$\frac{1}{15}, 0 \cdot 0667$	A1	
	Alternative method for question 7(c)		
	Probability $=\frac{1}{10} \times \frac{1}{9} \times 3$!	M1	$\frac{1}{10} \times \frac{1}{9} \times m!, m=3,2$
	$\frac{1}{15}, 0.0667$	A1	
		2	

Question	Answer	Marks	Guidance
7(d)	Scenarios:	M1	${ }^{5} \mathrm{C}_{x}$ seen alone, $1 \leqslant x \leqslant 4$
	$\begin{array}{lc} \text { P E E } & { }^{5} \mathrm{C}_{1}=5 \\ \text { P E } & { }^{5} \mathrm{C}_{2}=10 \\ \text { P }_{--} & { }^{5} \mathrm{C}_{3}=10 \end{array}$	M1	Summing the number of ways for 3 or 4 correct scenarios (can be unsimplified), no incorrect scenarios
	Total $=26$	A1	
		3	

Cambridge International A Level

MATHEMATICS
 9709/52
 Paper 5 Probability \& Statistics 1
 October/November 2020
 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees)
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations	
AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only ISW
Ignore Subsequent Working	
SOI	Seen Or Implied SC
Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the	
light of a particular circumstance)	

Question	Answer	Marks	Guidance
1(a)	$\begin{aligned} & 1-\left(\frac{5}{6}\right)^{5} \\ & \text { or } \frac{1}{6}+\frac{5}{6} \times \frac{1}{6}+\left(\frac{5}{6}\right)^{2} \times \frac{1}{6}+\left(\frac{5}{6}\right)^{3} \times \frac{1}{6}+\left(\frac{5}{6}\right)^{4} \times \frac{1}{6} \end{aligned}$	M1	$\begin{aligned} & 1-p^{\mathrm{n}} n=5,6 \\ & \text { or } p+p q+p q^{2}+p q^{3}+p q^{4}\left(+p q^{5}\right) \\ & 0<p<1, p+q=1 \end{aligned}$
	$0 \cdot 598, \frac{4651}{7776}$	A1	
		2	
1(b)	$\begin{aligned} & (1-\mathrm{P}(0,1,2)) \\ & 1-\left(\left(\frac{5}{6}\right)^{10}+{ }^{10} \mathrm{C}_{1}\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{9}+{ }^{10} \mathrm{C}_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{8}\right) \end{aligned}$	M1	${ }^{10} \mathrm{C}_{\mathrm{x}} p^{x}(1-p)^{10-x}, \quad 0<p<1$, any $p, x \neq 0,10$
	$1-(0 \cdot 1615056+0 \cdot 3230111+0 \cdot 290710)$	A1	Correct expression, accept unsimplified, condone omission of final bracket
	$0 \cdot 225$	A1	$0.2247<p \leq 0.225$, WWW
		3	

Question	Answer	Marks	Guidance
$2(\mathrm{c})$	$\operatorname{Var}(\mathrm{X})=\frac{\left(0^{2} \times 1\right)+1^{2} \times 15+2^{2} \times 30+3^{2} \times 10}{56}-\left(\frac{15}{8}\right)^{2}$	$\mathbf{M 1}$	Substitute their attempts at scores in correct variance formula, must have' - mean ${ }^{2}$ (FT if mean calculated) (condone probabilities not summing to 1 for this mark)
	$=\frac{15}{56}+\frac{120}{56}+\frac{90}{56}-\left(\frac{15}{8}\right)^{2}$	$\mathbf{A 1}$	
	$\frac{225}{448}, 0 \cdot 502$	$\mathbf{2}$	

Question	Answer	Marks	Guidance
3(a)	$\mathrm{P}(\mathrm{X}>11.3)=\mathrm{P}\left(z>\frac{11.3-10.1}{1.3}\right)=\mathrm{P}(z>0.9231)$	M1	Using \pm standardisation formula, no $\sqrt{\sigma}$ or σ^{2}, continuity correction
	$1-0.822$	M1	Appropriate area Φ, from standardisation formula $\mathrm{P}(z>\ldots)$ in final solution
	$0 \cdot 178$	A1	0.1779...
		3	
3(b)	$z=-0.674$	B1	± 0.674 seen (critical value)
	$\frac{t-10.1}{1.3}=-0 \cdot 674$	M1	An equation using \pm standardisation formula with a z-value, condone $\sqrt{\sigma}$ or σ^{2}, continuity correction.
	$t=9 \cdot 22$	A1	AWRT. Only dependent on M1
		3	

Question	Answer	Marks	Guidance
3(c)	$\begin{aligned} & \mathrm{P}(8.9<X<11.3)=1-2 \times \text { their } \mathbf{3}(\mathbf{a}) \\ & \equiv 2(1-\text { their } \mathbf{3}(\mathbf{a}))-1 \\ & \equiv 2(0.5-\text { their } \mathbf{3}(\mathbf{a})) \\ & =0.644 \end{aligned}$	B1 FT	FT from their $\mathbf{3 (a)}<0.5$ or correct, accept unevaluated probability OE
	$\begin{aligned} & \text { Number of days }=90 \times 0.644 \\ & =57.96 \end{aligned}$	M1	$90 \times$ their p seen, $0<p<1$
	So 57 (days)	A1 FT	Accept 57 or 58 , not $57 \cdot 0$ or $58 \cdot 0$, no approximation/rounding stated FT must be an integer value
	Alternative method for question 3(c)		
	$\begin{aligned} & \mathrm{P}\left(\frac{8 \cdot 9-10 \cdot 1}{1 \cdot 3}<z<\frac{11.3-10.1}{1 \cdot 3}\right) \\ & =\Phi(0.9231)-(1-\Phi(0.9231)) \text { oe } \\ & =0.822-(1-0.822) \\ & =0.644 \end{aligned}$	B1	Accept unevaluated probability
	$\begin{aligned} & \text { Number of days }=90 \times 0.644 \\ & =57.96 \end{aligned}$	M1	$90 \times$ their p seen, $0<p<1$
	So 57 (days)	A1 FT	Accept 57 or 58 , not $57 \cdot 0$ or $58 \cdot 0$, no approximation/rounding stated FT must be an integer value
		3	

Question	Answer	Marks	Guidance
4(a)		B1	All probabilities correct, may be on branch or next to 'Fine/Rainy' Ignore additional branches.
		1	
4(b)	$0.8 \times 0.75+0.2 \times 0.4(=0.6+0.08)$	M1	Correct or FT from their diagram unsimplified, all probabilities $0<p<1$. Partial evaluation only sufficient when correct. Accept working in 4(b) or by the tree diagram.
	$0.68, \frac{17}{25}$	A1	From supporting working
		2	

Question	Answer	Marks	Guidance
4(c)	$0.8 \times 0.75 \times 0.25+0.8 \times 0.25 \times 0.6$	M1	$a \times b \times c+a \times 1-b \times d, 0<c, d \leqslant 1,$ a, b consistent with their tree diagram or correct, no additional terms
	$0 \cdot 15+0 \cdot 12$	A1	At least one term correct, accept unsimplified
	0.27	A1	Final answer
		3	
4(d)	$\begin{aligned} & \mathrm{P}(\mathrm{Y})=\text { their }(\mathbf{c})+0.2 \times 0.4 \times 0.25+0.2 \times 0.6 \times 0.6 \\ & (=0.362) \end{aligned}$	B1 FT	their (c) $+e \times f \times g+e \times(1-f) \times h, 0<g, h \leqslant 1, e, f$ consistent with their tree diagram, or correct
	$\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=\frac{\text { their }(\mathrm{c})}{\text { their } \mathrm{P}(\mathrm{Y})}=\frac{0.27}{0.362}$	M1	their 4(c) (or correct)/their previously calculated and identified $\mathrm{P}(\mathrm{Y})$ or a denominator involving 3 or 43 -factor probability terms consistent with their tree diagram \& third factor $0<p<1$
	$0 \cdot 746, \frac{373}{500} \text { or } \frac{135}{181}$	A1	(0.7458...)
		3	

Question			Answer	Marks	Guidance	
5(a)	Dados	Linva		B1	Correct stem can be upside down, ignore extra values	
	6 5 2 0 0 1 0 1 2 5 6 KEY 6\| 3	2 means 36 cm (snow) in Dados and 32 cm (snow) in Linva			B1	Correct Dados labelled, leaves in order and lined up vertically (less than midway to next column), no commas etc, no extra terms
				B1	Correct Linva on opposite side of stem labelled, leaves in order and lined up vertically (less than midway to next column), no commas etc, no extra terms	
				B1	Correct single key for their diagram, need both resorts identified and ' cm ' stated at least once here or in leaf headings or title. SC If 2 separate diagrams drawn, SCB1 if both keys meet these criteria B0B1B0SCB1 max.	
				4		
5(b)	Median or Q2 = $15(\mathrm{~cm})$			B1	Correct	
	UQ or $\mathrm{Q} 3=28 \mathrm{~cm}, \mathrm{LQ}$ or $\mathrm{Q} 1=10 \mathrm{~cm}$ $\mathrm{IQR}=28-10$			M1	$22 \leqslant \mathrm{UQ} \leqslant 36-8 \leqslant L \mathrm{~L} \leqslant 10$	
	18 (cm)			A1	WWW	
				3		
5(c)	On average the snowfall in Davos is higher			B1 FT	FT from their 5(b) values for Dados. Statement comparing central tendency in context	
	The amount of snowfall in Linva varies more than in Davos			B1 FT	Statement comparing spread in context Note: simply stating and comparing the values is not sufficient.	
				2		

PUBLISHED

Question	Answer	Marks	Guidance
6(a)	${ }^{9} \mathrm{C}_{6}\left(\times{ }^{3} \mathrm{C}_{3}\right)$	M1	${ }^{9} \mathrm{C}_{k} \times n, k=6,3, n=1,2$ oe Condone ${ }^{9} \mathrm{C}_{6}+{ }^{3} \mathrm{C}_{3},{ }^{9} \mathrm{P}_{6} \times{ }^{3} \mathrm{P}_{3}$
	84	A1	Accept unevaluated.
		2	
6(b)	Number with 3 Baker children $={ }^{6} \mathrm{C}_{2}$ or 15	B1	Correct seen anywhere, not multiplied or added
	$\begin{aligned} & \text { Total no of selections }={ }^{9} \mathrm{C}_{5} \text { or } 126 \\ & \text { Probability }=\frac{\text { number of selections with } 3 \text { Baker children }}{\text { total number of selections }} \end{aligned}$	M1	Seen as denominator of fraction
	$\frac{15}{126}, 0 \cdot 119$	A1	$\text { OE, e.g. } \frac{5}{42}$
	Alternative method for question 6(b)		
	$\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7}\left(\times \frac{6}{6}\right)\left(\times \frac{5}{5}\right) \times{ }^{5} C_{3}$	B1	${ }^{5} \mathrm{C}_{3}$ (OE) or 10 seen anywhere, multiplied by fractions only, not added
		M1	$\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7}\left(\times \frac{6}{6}\right)\left(\times \frac{5}{5}\right) \times k, 1 \leqslant k, k$ integer
	$\frac{15}{126}, 0 \cdot 119$	A1	$\text { OE, e.g. } \frac{5}{42}$
		3	

PUBLISHED

Question	Answer	Marks	Guidance
6(c)	[Total no of arrangements $=9!$] [Arrangements with men together $=8!\times 2$] Not together: 9! -	M1	9! - k or $362880-k, k$ an integer <362880
	$8!\times 2$	B1	$8!\times 2(!)$ or 80640 seen anywhere
	282240	A1	Exact value
	Alternative method for question 6(c)		
	$7!\times 8 \times 7$	B1	$7!\times k, k$ positive integer >1
		M1	$m \times 8 \times 7, m \times{ }^{8} \mathrm{P}_{2,} m \times{ }^{8} \mathrm{C}_{2} m$ positive integer >1
	282240	A1	Exact value
		3	
6(d)	$7!\times 2 \times 7$	M1	$7!\times k, k$ positive integer >1 If 7 ! not seen, condone $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times(1) \times k$ or $7 \times 6!\times k$ only
		M1	$m \times 2 \times 7, m$ positive integer >1
	70560	A1	
		3	

Cambridge International A Level

MATHEMATICS
 9709/53
 Paper 5 Probability \& Statistics 1
 October/November 2020
 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees)
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

AEF/OE

CWO Correct Working Only
ISW
SOI

WWW Without Wrong Working
AWRT
Ignore Subsequent Working
Seen Or Implied light of a particular circumstance)

Answer Which Rounds To

Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

Question	Answer	Marks	Guidance
1(a)	$\begin{aligned} & \mathrm{P}(56<X<66)=\mathrm{P}\left(\frac{56-62}{5}<z<\frac{66-62}{5}\right) \\ & =\mathrm{P}(-1.2<z<0.8) \end{aligned}$	M1	Using \pm standardisation formula at least once, no $\sqrt{\sigma}$ or σ^{2}, allow continuity correction
	$\begin{aligned} & \Phi(0.8)+\Phi(1.2)-1 \\ & =0.7881+0.8849-1 \end{aligned}$	M1	Appropriate area Φ, from standardisation formula in final solution
	0.673	A1	
		3	
1(b)	$z=1.127$	B1	$\pm(1.126-1.127)$ seen, 4 sf or more
	$\begin{aligned} & \frac{60 t-62}{5}=1.127 \\ & 60 t=5.635+62=67.635 \end{aligned}$	M1	$z \text {-value }= \pm \frac{(60 t-62)}{5} \text { condone } z \text {-value }= \pm \frac{(t-62)}{5}$ no continuity correction, condone $\sqrt{\sigma}$ or σ^{2}
	$t=1.13$	A1	CAO
		3	

Question	Answer	Marks	Guidance
2(a)	$\left(\frac{5}{6}\right)^{8}$	M1	$p^{8}, 0<p<1$, no $x,+$ or -
	0.233	A1	
		2	
2(b)	36	B1	
		1	
2(c)	$\mathrm{P}(X=10)+\mathrm{P}(X=11)=\left(\frac{35}{36}\right)^{9} \frac{1}{36}+\left(\frac{35}{36}\right)^{10} \frac{1}{36}$	M1	OE, unsimplified expression in form $p^{9} q+p^{10} q$, $p+q=1$, no \times
	0.0425	A1	
		2	

Question	Answer	Marks	Guidance
3(a)	Scenarios: $6 \mathrm{~W} \mathrm{0M}{ }^{9} \mathrm{C}_{6}=84$	M1	Correct number of ways for either 5 or 4 women, accept unsimplified
	$4 \mathrm{~W} 2 \mathrm{M}{ }^{9} \mathrm{C}_{4} \times{ }^{5} \mathrm{C}_{2}=126 \times 10=1260$	M1	Summing the number of ways for 2 or 3 correct scenarios (can be unsimplified), no incorrect scenarios.
	Total $=1974$	A1	
		3	
3(b)	$\begin{aligned} & \text { Total number of ways }={ }^{14} \mathrm{C}_{6}(3003) \\ & \text { Number with sister and brother }={ }^{11} \mathrm{C}_{4}(495) \\ & \text { Number required }={ }^{14} \mathrm{C}_{6}- \end{aligned}$	M1	${ }^{14} \mathrm{C}_{6}$ - a value
	${ }^{12} \mathrm{C}_{4}=3003-495$	M1	${ }^{12} \mathrm{C}_{\mathrm{x}}$ or ${ }^{\mathrm{n}} \mathrm{C}_{4}$ seen on its own or subtracted from their total, $x \leqslant 6$, $\mathrm{n} \leqslant 13$
	2508	A1	
	Alternative method for question 3(b)		
	Number of ways with neither $={ }^{12} \mathrm{C}_{6}=924$	M1	${ }^{12} \mathrm{C}_{6}+$ a value
	Number of ways with either brother or sister (not both) $={ }^{12} \mathrm{C}_{5} \times 2(=792 \times 2)=1584$	M1	${ }^{12} \mathrm{C}_{\mathrm{x}} \times 2$ or ${ }^{\mathrm{n}} \mathrm{C}_{5} \times 2$ seen on its own or added to their number of ways with neither, $x \leqslant 5, \mathrm{n} \leqslant 12$
	$\begin{aligned} & \text { Number required }=924+1584 \\ & =2508 \end{aligned}$	A1	
		3	

PUBLISHED

Question	Answer	Marks	Guidance
4(a)	$0.65^{7}+{ }^{7} \mathrm{C}_{1} 0.65^{6} 0.35^{1}+{ }^{7} \mathrm{C}_{2} 0.65^{5} 0.35^{2}$	M1	Binomial term of form ${ }^{7} \mathrm{C}_{\mathrm{x}} p^{x}(1-p)^{7-x}, 0<p<1$, any $p, x \neq 0,7$
	$0.049022+0.184776+0.29848$	A1	Correct unsimplified answer
	0.532	A1	
		3	
4(b)	$\begin{aligned} & \text { Mean }=142 \times 0.35=49.7 \\ & \text { Variance }=142 \times 0.35 \times 0.65=32.305 \end{aligned}$	B1	Correct unsimplified $n p$ and $n p q$ (condone $\sigma=5.684$ evaluated)
	$\mathrm{P}(X>40)=\mathrm{P}\left(z>\frac{40.5-49.7}{\sqrt{32.305}}\right)$	M1	Substituting their μ and σ (no $\sqrt{\sigma}$ or σ^{2}) into \pm standardisation formula with a numerical value for '40.5'
	$\mathrm{P}(z>-1.619)$	M1	Using either 40.5 or 39.5 within a \pm standardisation formula
		M1	Appropriate area Φ, from standardisation formula $\mathrm{P}(z>\ldots)$ in final solution, must be probability
	0.947	A1	Correct final answer
		5	

PUBLISHED

Question	Answer	Marks	Guidance
5(a)	$\text { Total number of ways }=\frac{8!}{3!2!}(=3360)$	B1	Correct unsimplified expression for total number of ways
	Number of ways with V and E in correct positions $=\frac{6!}{2 \ltimes 2!}(=180)$	B1	$\frac{6!}{2 \times 2!}$ alone or as numerator in an attempt to find the number of ways with V and E in correct positions. $\text { No } \times, \pm$
	Probability $=\frac{180}{3360}\left(=\frac{3}{56}\right)$ or 0.0536	B1 FT	Final answer from their $\frac{6!}{2 \times 2!}$ divided by their total number of ways
	Alternative method for question 5(a)		
	$\frac{1}{8} \times \frac{3}{7}$	M1	$\frac{a}{8} \times \frac{b}{7}$ seen, no other terms (correct denominators)
		M1	$\frac{1}{c} \times \frac{3}{d}$ seen, no other terms (correct numerators)
	$\frac{3}{56}$ or 0.0536	A1	
		3	

PUBLISHED

Question	Answer	Marks	Guidance
5(b)	Rs together and Es together: 5! (120)	B1	Alone or as numerator of probability to represent the number of ways with Rs and Es together, no $\times,+$, -
	Es together: $\frac{6!}{2!}(=360)$	B1	Alone or as denominator of probability to represent the number of ways with Es together, no $\times,+$ or -
	$\text { Probability }=\frac{5!}{\frac{6!}{2!}}$	M1	$\frac{\text { their } 5!}{\text { their } \frac{6!}{2!}} \text { seen }$
	$\frac{1}{3}$	A1	OE
	Alternative method for question 5(b)		
	P (Rs together and Es together). $\overline{\text { their total number of ways }}\left(=\frac{1}{28}\right)$	B1	
	$\mathrm{P}(\text { Es together }): \frac{6!}{\frac{2!}{\text { their total number of ways }}}\left(=\frac{3}{28}\right)$	B1	Alone or as numerator of probability to represent the P(Rs and Es together), no $\times,+,-$
	$\text { Probability }=\frac{\frac{1}{28}}{\frac{3}{28}}$	M1	Alone or as denominator of probability to represent the $\mathrm{P}($ Es together $)$, no $\times,+$ or -
	$\frac{1}{3}$	A1	OE, $\frac{\text { their } \frac{1}{28}}{\text { their } \frac{3}{28}}$ seen
		4	

PUBLISHED

PUBLISHED

Question	Answer	Marks	Guidance
7(c)	Midpoints: 3815.530 .555 .5	M1	At least 4 midpoints correct and used
	$\begin{aligned} & \text { Mean }=\frac{3 \times 10+8 \times 5+15.5 \times 26+30.5 \times 32+55.5 \times 18}{91} \\ & =\frac{30+40+403+976+999}{91} \\ & =\frac{2448}{91} \end{aligned}$	M1	Correct formula with their midpoints (not upper boundary, lower boundary, class width, frequency density, frequency or cumulative frequency)
	$26.9,26 \frac{82}{91}$	A1	Accept 26 or 27
		3	

Cambridge International AS \& A Level

MATHEMATICS
 9709/51
 Paper 5 Probability \& Statistics 1
 October/November 2021
 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\left(\frac{3}{4}\right)^{6} \frac{1}{4}$	M1	$(1-p)^{6} p, 0<p<1$
	$0.0445, \frac{729}{16384}$	A1	
		2	
1(b)	$\left(\frac{3}{4}\right)^{9}$	M1	$\left(\frac{3}{4}\right)^{n}$ or $p^{n}, 0<p<1, n=8,9,10$
	$0.0751, \frac{19683}{262144}$	A1	
		2	

Question	Answer	Marks	Guidance
2(a)	$\begin{aligned} & {\left[\frac{\sum x}{40}-k=\frac{\sum(x-k)}{40}\right]} \\ & \frac{40 \times 34}{40}-k=\frac{520}{40} \end{aligned}$	M1	Forms an equation involving $\Sigma x, \Sigma(x-k)$ and k. Accept at a numeric stage with k.
	$k[=34-13]=21$	A1	Evaluated.
		2	

Question	Answer	Marks	Guidance
$2(\mathrm{~b})$	$\operatorname{Var}=\left[\frac{\sum(x-k)^{2}}{40}-\left(\frac{\sum(x-k)}{40}\right)^{2}\right]=\frac{9640}{40}-\left(\frac{520}{40}\right)^{2}=\left[241-13^{2}=\right]$	M1	Values substituted into an appropriate variance formula, accept unsimplified.
	72	A1	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
3	$\left[\mathrm{P}\left(T \mid B^{\prime}\right)=\frac{\mathrm{P}\left(T \cap B^{\prime}\right)}{\mathrm{P}\left(B^{\prime}\right)}\right]$	M1	$0.45 \times a+0.35 \times b+0.2[\times 1], a=0.7,0.3 b=0.4,0.6$, seen anywhere.
	$\begin{aligned} & \mathrm{P}\left(B^{\prime}\right)=0.45 \times 0.7+0.35 \times 0.4+0.2 \times 1 \\ & {\left[=0.655, \frac{131}{200}\right]} \end{aligned}$	A1	Correct, accept unsimplified.
	$\mathrm{P}\left(T \cap B^{\prime}\right)=0.35 \times 0.4\left[=0.14, \frac{7}{50}\right]$	M1	Seen as numerator or denominator of a fraction.
	$\mathrm{P}\left(T \mid B^{\prime}\right)=\frac{\text { their } 0.14}{\text { their } 0.655}$	M1	Values substituted into conditional probability formula correctly. Accept unsimplified. Denominator sum of 3 two-factor probabilities (condone omission of 1 from final factor). If clearly identified, condone from incomplete denominator.
	$0.214, \frac{28}{131}$	A1	If 0 marks awarded, SC B1 0.214 WWW.
		5	

PUBLISHED

Question	Answer	Marks	Guidance
5(a)	[8! =] 40320	B1	Evaluated, exact value only.
		1	
5(b)	Method $1\left[\wedge \wedge \wedge \mathrm{R}^{\wedge} \wedge \mathrm{S}^{\wedge} \wedge\right]$		
	$7!\times{ }^{8} \mathrm{C}_{2} \times 2$	M1	$7!\times k$ seen, k an integer >1.
		M1	$m \times n(n-1)$ or $m \times{ }^{n} C_{2}$ or $m \times{ }^{n} P_{2}, n=7,8$ or $9, m$ an integer >1.
	282240	A1	Exact value only. SC B1 for final answer 282240 WWW.
	Method 2 [Total number of arrangements - Arrangements with R \& S together]		
	$9!-8!\times 2$	M1	9 ! $-k, k$ an integer <362880.
		M1	$m-8!\times n, m$ an integer $>40320, n=1,2$.
	282240	A1	Exact value only. SC B1 for final answer 282240 WWW.
		3	
5(c)	${ }^{9} \mathrm{C}_{5}\left[\times{ }^{4} \mathrm{C}_{4}\right]$	M1	${ }^{9} \mathrm{C}_{x}\left[\times{ }^{9-x} \mathrm{C}_{9-x},\right] x=4$, 5 . Condone $\times 1$ for ${ }^{9-x} \mathrm{C}_{9-x}$. Condone use of P .
	126	A1	WWW
		2	

PUBLISHED

Question	Answer	Marks	Guidance
5(d)	[Number of ways with Raman and Sanjay together on back row $=]^{7} \mathrm{C}_{3}$ [Number of ways with Raman and Sanjay together on front row $=]^{7} \mathrm{C}_{2}$	M1	${ }^{7} \mathrm{C}_{x}$ seen, $x=3$ or 2.
	[Total $=] 35+21$	M1	Summing two correct scenarios.
	56	A1	Evaluated - may be seen used in probability. If M0 scored, SC B1 for 56 WWW.
	Probability $=\frac{\text { their } 56}{\text { their }(c)}=\frac{56}{126}, \frac{4}{9}, 0.444$	B1 FT	FT their 56 from adding 2 or more scenarios in numerator and their (c) or correct as denominator.
		4	

Question	Answer	Marks	Guidance
6(a)	Rebels	B1	Correct stem, ignore extra values (not in reverse).
	$\begin{array}{llllllll\|l\|llllllll} \hline & & & & & & & & & 6 & 6 & 6 & 8 & & & & \\ 7 & & & & & 8 & 5 & \\ 7 & 1 & 2 & 4 & 5 & 5 & 6 & 8 \\ 8 & 6 & 5 & 4 & 3 & 2 & 2 & 0 & 8 & 3 & 4 & 5 & 6 & & & \\ \hline \end{array}$	B1	Correct Rebels labelled on left, leaves in order from right to left and lined up vertically, no commas.
	9 5 3 9 2 2 10	B1	Correct Sharks labelled on same diagram, leaves in order and lined up vertically, no commas.
	Key: $8\|7\| 2$ means 78 kg for Rebels and 72 kg for Sharks	B1	Correct key for their diagram, need both teams identified and ' kg ' stated at least once here or in leaf headings or title. SC If 2 separate diagrams drawn, SC B1 if both keys meet these criteria.
		4	

Question	Answer	Marks	Guidance
6(b)	Median $=84(\mathrm{~kg})$	B1	
	$[\mathrm{UQ}=93, \mathrm{LQ}=80] 93-80$	M1	$95 \leqslant \mathrm{UQ} \leqslant 89-79 \leqslant \mathrm{LQ} \leqslant 82$
	$[\mathrm{IQR}=] 13(\mathrm{~kg})$	A1	WWW
		3	
6(c)	Box and whisker with end points 75 and 102	B1	Whiskers drawn to correct end points not through box, not joining at top or bottom of box.
	Median and quartiles plotted as found in (b)	B1 FT	Quartiles and median plotted as box graph.
		2	
6(d)	e.g. Average weight of Rebels is higher than average weight of Sharks	B1	Acceptable answers refer to: Range, skew, central tendency within context. E.g. range of Rebels is greater $\mathbf{B 0}$. Range of weights of the rebels is greater $\mathbf{B} 1$. Simple value comparison insufficient.
		1	

PUBLISHED

Question	Answer	Marks	Guidance
7(a)(i)	$\mathrm{P}(X>142)=\mathrm{P}\left(Z>\frac{142-125}{24}\right)$	M1	Substitution of correct values into the \pm Standardisation formula, allow continuity correction, not $\sigma^{2}, \sqrt{ } \sigma$.
	$[=\mathrm{P}(Z>0.7083)=] 1-0.7604$	M1	Appropriate numerical area Φ, from final process, must be probability, expect $p<0.5$.
	0.2396	A1	$0.239 \leqslant p \leqslant 0.240$ to at least 3sf.
	Their $0.2396 \times 365[=87.454]$	M1	FT their 4sf (or better) probability.
	87 or 88	A1 FT	Final answer must be positive integer, no indication of approximation/rounding, only dependent on previous \mathbf{M} mark. SC B1 FT for their 3 sf probability $\times 365=$ integer value, condone 0.24 used.
		5	
7(a)(ii)	$\begin{aligned} & \mathrm{P}(0,1)=0.7604^{10}+{ }^{10} \mathrm{C}_{1} \times 0.2396^{1} \times 0.7604^{9} \\ & {[=0.064628+0.20364]} \end{aligned}$	M1	One term: ${ }^{10} \mathrm{C}_{\mathrm{x}} p^{\mathrm{x}}(1-p)^{10-\mathrm{x}}$ for $0<x<10$, any p.
		A1 FT	Correct unsimplified expression using their probability to at least 3 sf from (a)(i) or correct.
	0.268	A1	AWRT, WWW.
		3	
7(b)	$z= \pm 1.282$	B1	Correct value only, critical value.
	$\frac{t-125}{24}=-1.282$	M1	Use of \pm Standardisation formula with correct values substituted, allow continuity correction, $\sigma^{2}, \sqrt{ } \sigma$, to form an equation with a z-value and not probability.
	$t=94.2$	A1	AWRT, condone AWRT 94.3. Not dependent on B mark.
		3	

Cambridge International AS \& A Level

MATHEMATICS
 9709/52
 Paper 5 Probability \& Statistics 1
 October/November 2021
 MARK SCHEME

Maximum Mark: 50
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\frac{82}{180}, \frac{41}{90}, 0.456$	B1	
		1	
1(b)	$\left[\mathrm{P}(\mathrm{M} \mid \mathrm{D})=\frac{P(M \cap D)}{P(D)}\right]=\frac{\frac{11}{180}}{\frac{20}{180}+\frac{11}{180}} \text { or } \frac{0.6011}{0.1722}$	M1	Their identified $\frac{P(M \cap D)}{P(D)}$ or from data table $\frac{11}{20+11}$, accept unsimplified, condone $\times 180$.
	$\frac{11}{31}, 0.355$	A1	Final answer.
		2	

Question	Answer	Marks	Guidance
1(c)	$\mathrm{P}(\mathrm{~F})=\frac{100}{180}, \frac{5}{9}, 0.5556 \text { OE } \mathrm{P}(\mathrm{G})=\frac{82}{180}, \frac{41}{90} 0.4556 \quad \text { OE }$	M1	Their identified $\mathrm{P}(\mathrm{F}) \times$ their identified $\mathrm{P}(\mathrm{G})$ or correct seen, can be unsimplified.
	$\begin{aligned} & \mathrm{P}(\mathrm{~F} \cap \mathrm{G})=\frac{38}{180}, \frac{19}{90}, 0.2111 \quad \mathrm{OE} \\ & \mathrm{P}(\mathrm{~F}) \times \mathrm{P}(\mathrm{G})=\frac{100}{180} \times \frac{82}{180}=\frac{41}{162}, 0.2531 \quad \mathrm{OE} \quad\left[\neq \frac{38}{180}\right] \end{aligned}$ Not independent	A1	$\frac{41}{162}, \frac{38}{180}, \mathrm{P}(\mathrm{F} \cap \mathrm{G})$ and $\mathrm{P}(\mathrm{F}) \times \mathrm{P}(\mathrm{G})$ seen with correct conclusion, WWW. Values and labels must be seen.
	Alternative method for question 1(c)		
	3819,021110	M1	$\mathrm{P}(\mathrm{F} \mid \mathrm{G})$ (OE) unsimplified with their identified probs or correct
	$\begin{aligned} & \mathrm{P}(\mathrm{~F} \mid \mathrm{G})=\frac{\frac{38}{\frac{81}{82}}}{\frac{82}{180}}=\frac{19}{41}, 0.4634 \quad \mathrm{OE} \\ & \neq \mathrm{P}(\mathrm{~F})=\frac{100}{180}, \frac{5}{9}, 0.5556 \mathrm{OE} \end{aligned}$ Not independent	A1	$\frac{19}{41}, \frac{100}{180}, \mathrm{P}(\mathrm{F} \cap \mathrm{G})$ and $\mathrm{P}(\mathrm{F} \mid \mathrm{G})$ seen with correct conclusion WWW. Values and labels must be seen.
		2	

Question	Answer	Marks	Guidance
2(a)	${ }^{11} \mathrm{C}_{5} \times{ }^{4} \mathrm{C}_{1}$	M1	${ }^{11} \mathrm{C}_{5} \times{ }^{4} \mathrm{C}_{1}$ condone ${ }^{11} \mathrm{P}_{5} \times{ }^{4} \mathrm{P}_{1}$ no,,$+- \times$ or \div.
	1848	A1	CAO as exact.
		2	
2(b)	Method 1 [Identifying scenarios]		
	[Neither selected $={ }^{13} \mathrm{C}_{6}[=1716]$ [Only Jane selected $={ }^{13} \mathrm{C}_{5}[=1287]$ [Only Kate selected $=]{ }^{13} \mathrm{C}_{5}[=1287]$	M1	Either ${ }^{13} \mathrm{C}_{6}$ seen alone or ${ }^{13} \mathrm{C}_{5}$ seen alone or $\times 2$ (condone ${ }^{13} \mathrm{P}_{n}, n=5,6$).
	[Total $=$] $1716+1287+1287$	M1	Three correct scenarios only added, accept unsimplified (values may be incorrect).
	4290	A1	
	Method 2 [Total number of selections - selections with Jane and Kate both picked]		
	${ }^{15} \mathrm{C}_{6}-{ }^{13} \mathrm{C}_{4}[=5005-715]$	M1	${ }^{15} \mathrm{C}_{6}-k, k$ a positive integer <5005, condone ${ }^{15} \mathrm{P}_{6}$.
		M1	$m-{ }^{13} \mathrm{C}_{4}, m$ integer >715, condone $n-{ }^{13} \mathrm{P}_{4}, n>17160$.
	4290	A1	
		3	
			SC Where the condition of $\mathbf{2 (a)}$ is also applied in 2(b), the final answer is $1512 \mathbf{S C}$ M1 M1 A0 max. The method marks can be earned for the equivalent stages in each method. Method $1{ }^{4} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{5}+{ }^{4} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{4} \times 2$ Method $2{ }^{4} \mathrm{C}_{1} \times{ }^{11} \mathrm{C}_{5}-{ }^{4} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{3}$

Question	Answer	Marks	Guidance
3(a)	For one yellow: YGG + GYG + GGY $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times 3$	M1	$\frac{a}{9} \times \frac{b}{8} \times \frac{c}{7}, 0<a, b, c$ integers $\leqslant 5$, for one arrangement.
		M1	Their three-factor probability $\times 3,{ }^{3} \mathrm{C}_{1},{ }^{3} \mathrm{C}_{2}$ or ${ }^{3} \mathrm{P}_{1}$, (or repeated adding) no additional terms.
	$\left[\frac{180}{504}=\right] \frac{5}{14}$	A1	AG. Convincingly shown, including identifying possible scenarios, may be on tree diagram WWW.
		3	
	Alternative method for question 3(a)		
	$\frac{{ }^{5} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{2}}{{ }^{9} \mathrm{C}_{3}}$	M1	$\frac{{ }^{5} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{2}}{{ }^{9} \mathrm{C}_{r}}, r=2,3,4$
		M1	$\frac{{ }^{5} \mathrm{C}_{s} \times{ }^{4} \mathrm{C}_{t}}{{ }^{9} \mathrm{C}_{3}}, s+t=3$
	$\left[\frac{30}{84}=\right] \frac{5}{14}$	A1	AG. Convincingly shown, WWW.
		3	

Question	Answer					Marks	Guidance
3(b)	$\frac{X}{P(X)}$	$\begin{gathered} 0 \\ \hline 24 \end{gathered}$	180	$\frac{2}{240}$	3 60	B1	Table with correct X values and one correct probability inserted appropriately. Condone any additional X values if probability stated as 0 .
		504	$\overline{504}$	504	504	B1	Second identified correct probability, may not be in table.
		$\left[\begin{array}{c} =\frac{i}{21}, \\ 0.0476 \end{array}\right]$	$\left[\begin{array}{c}=\frac{5}{14} \\ 0.357\end{array}\right]$	$\left[\begin{array}{c} =\frac{0}{21} \\ 0.476 \end{array}\right]$	$\left[\begin{array}{c}=\overline{42} \\ 0.119\end{array}\right]$	B1	All probabilities identified and correct . SC if less than 2 correct probabilities or X value(s) omitted: SC B1 3 or 4 probabilities summing to one.
						3	
3(c)	$[\mathrm{E}(X)=] \frac{840}{504}, \frac{5}{3}, 1.67$					B1	OE Must be evaluated. SC B1 FT correct unsimplified expression from incorrect 3(b) using at least 3 probabilities, $0<p<1$.
						1	

Question	Answer	Marks	
$4(\mathrm{a})$	$\frac{9!}{3!}$	$\mathbf{M 1}$	$\frac{9!}{e!}, e=2,3$
	60480	$\mathbf{A 1}$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
4(b)	$\frac{7!}{3!} \times 2 \times 6$	M1	$\frac{7!}{3!} \times k \text { seen, } k \text { an integer }>0$
		M1	$\frac{m!}{n!} \times 2 \times q \quad 7 \leqslant m \leqslant 9,1 \leqslant n \leqslant 3,1 \leqslant q \leqslant 8$ all integers.
		M1	$\frac{m!}{n!} \times p \times 6 \quad 7 \leqslant m \leqslant 9,1 \leqslant n \leqslant 3,1 \leqslant p \leqslant 2$ all integers. (Accept 3P2 for 6) If M0 M0 M0 awarded, SC M1 for $t \times 12, t$ an integer $\geqslant 20, \frac{5!}{3!}$
	10080	A1	Exact value.
	Alternative method for question 4(b)		
	$\frac{{ }^{7} \mathrm{P}_{2} \times 6!\times 2}{3!}$	M1	$\frac{6!}{3!} \times k \text { seen, } k \text { an integer }>0$
		M1	$\frac{m!}{n!} \times{ }^{7} \mathrm{P}_{2} \times q \quad m=6,9,1 \leqslant n \leqslant 3,1 \leqslant q \leqslant 2$ all integers.
		M1	$\frac{m!}{n!} \times{ }^{7} \mathrm{P}_{\mathrm{r}} \times 2 \quad m=6,9,1 \leqslant n \leqslant 3,1 \leqslant r \leqslant 5$ all integers. If M0 M0 M0 awarded, SC M1 for $t \times 84, t$ an integer $\geqslant 20, \frac{5!}{3!}$.
	10080	A1	Exact value.

Question	Answer	Marks	Guidance
4(b)	Alternative method for question 4(b)		
	$\frac{7!}{3!} \times 4 \mathrm{P} 2$	M1	$\frac{7!}{3!} \times k \text { seen, } k \text { an integer }>0$
		M1	$t \times{ }^{4} \mathrm{P}_{2} \text { or } 12, t \text { an integer } \geqslant 20, \frac{5!}{3!}$
		M1	$\frac{m!}{n!} \times 4 \mathrm{P} 2 \quad 7 \leqslant m \leqslant 9,1 \leqslant n \leqslant 3$ all integers.
	10008	A1	Exact value.
		4	

Question	Answer	Marks	Guidance
5(a)	$\begin{aligned} & {[\mathrm{P}(0,1,2)=]{ }^{10} \mathrm{C}_{0} 0.16^{0} 0.84^{10}+{ }^{10} \mathrm{C}_{1} 0.16^{1} 0.84^{9}+{ }^{10} \mathrm{C}_{2} 0.16^{2} 0.84^{8}} \\ & {[=0.17490+0.333145+0.2855]} \end{aligned}$	M1	One term: ${ }^{10} \mathrm{C}_{x} p^{x}(1-p)^{10-x}$ for $0<x<10$, any p.
		A1	Correct unsimplified expression, or better.
	0.794	A1	$0.7935<p \leqslant 0.794$, mark at most accurate. If M0 scored, SC B1 for final answer 0.794.
		3	
5(b)	$(0.84)^{7} 0.16$	M1	$(1-p)^{7} p, 0<p<1$
	0.0472	A1	0.0472144 to at least 3sf.
		2	

Question	Answer	Marks	Guidance
$5(\mathrm{c})$	$4 \times 0.0472 \times(1-0.0472)^{3}$	$\mathbf{M 1}$	$4 \times q(1-q)^{3}, q=$ their (\mathbf{b}) or correct.
	0.163	$\mathbf{A 1}$	$0.163 \leqslant p \leqslant 0.1634$, mark at most accurate from their probability to at least 3sf.
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
6(a)	$\begin{aligned} & {[\mathrm{P}(X>28.6)=] P\left(Z>\frac{28.6-32.2}{9.6}\right)} \\ & {[=P(Z>-0.375)]} \end{aligned}$	M1	28.6, 32.2 and 9.6 substituted appropriately in \pm Standardisation formula once, allow continuity correction of ± 0.05, no $\sigma^{2}, \sqrt{ } \sigma$.
	$[\Phi($ their 0.375$)=]$ their 0.6462	M1	Appropriate numerical area, from final process, must be probability, expect >0.5.
	0.646	A1	AWRT
		3	
6(b)	$z= \pm 0.842$	B1	$0.841<\mathrm{z} \leqslant 0.842$ or $-0.842 \leqslant z<-0.841$ seen.
	$\frac{t-32.2}{9.6}=0.842$	M1	Substituting 32.2 and 9.6 into \pm standardisation formula, no continuity correction, allow $\sigma^{2}, \sqrt{ } \sigma$, must be equated to a z-value.
	$t=40.3$	A1	$40.28 \leqslant t \leqslant 40.3$ WWW
		3	

Question	Answer	Marks	Guidance
6(c)	$\begin{aligned} & P\left(-\frac{15}{9.6}<Z<\frac{15}{9.6}\right) \\ & P(-1.5625<Z<1.5625) \end{aligned}$	M1	Identifying at least one of $\frac{15}{9.6}$ and $-\frac{15}{9.6}$ as the appropriate z-values or substituting their (32.2 ± 15) into \pm Standardisation formula once, no continuity correction, σ^{2} nor $\sqrt{ } \sigma$. Condone ± 1.563 for M1.
	$\text { [2 } \Phi(15$	A1	$p=0.941 \quad$ AWRT SOI
	$=2 \times 0.9409-1$	M1	Appropriate area $2 \Phi-1$ oe, (eg $1-2 \times 0.0591$, $2 \times(0.9409-0.5)$ or $0.9409-0.0591)$, from final process, must be probability >0.5.
	0.882	A1	
		4	

Question	Answer	Marks	Guidance
7(a)	Cumulative frequency graph drawn	B1	Axes labelled 'cumulative frequency' (or cf) from 0 to at least 140 and 'distance (or d) [in] m' from 0 to at least 1600 , linear scales with at least 3 values stated.
		B1	All plotted correctly at correct upper end points (200 etc.) curve drawn accurately joined to $(0,0)$ (straight line segments B 0) but no daylight above 140 . Cf scale no less than $2 \mathrm{~cm}=20$ children .
		2	

Question	Answer	Marks	Guidance
7(b)	[UQ at 75% of $140=105$, LQ at 25% of $140=35$] [IQR:] $700-260$	M1	Accept $660 \leqslant \mathrm{UQ} \leqslant 720-240 \leqslant \mathrm{LQ} \leqslant 290$. If values are outside our range, FT providing scales linear and increasing cf drawn.
	440	A1	Accept correct evaluation of $660 \leqslant$ their $\mathrm{UQ} \leqslant 720-240 \leqslant$ their $\mathrm{LQ} \leqslant 290$ with clear indication that graph has been used for at least one of 105 or 35.
		2	

Cambridge International AS \& A Level

MATHEMATICS
 9709/53
 Paper 5 Probability \& Statistics 1
 October/November 2021
 MARK SCHEME

Maximum Mark: 50
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	${ }^{23} \mathrm{C}_{17}$	$\mathbf{M 1}$	${ }^{23} \mathrm{C}_{\mathrm{x}}$ or ${ }^{\mathrm{y}} \mathrm{C}_{17}$ or ${ }^{\mathrm{z}} \mathrm{C}_{6}, x, y$ or z are integers no,,$+- \times$ or \div.
	100947	$\mathbf{A 1}$	CAO
		$\mathbf{2}$	

PUBLISHED

Question	Answer	Marks	Guidance
4(a)	$P(X>43.2)=P\left(Z>\frac{43.2-41.2}{3.6}\right)=P(Z>0.5556)$	M1	Use of \pm Standardisation formula once, allow continuity correction, not $\sigma^{2}, \sqrt{ } \sigma$.
	$1-\Phi(0.5556)=1-0.7108$	M1	Appropriate area Φ, from final process, must be probability.
	0.289	A1	AWRT
		3	
4(b)	Probability $=1-$ their $(\mathbf{a})=1-0.2892=0.7108$	B1FT	1 - their (a) or correct.
	$\begin{aligned} & 0.7108 \times 365=259.4 \\ & 259,260 \end{aligned}$	B1FT	FT their 4SF (or better) probability, final answer must be positive integer.
		2	
4(c)	$z= \pm 1.645$	B1	CAO, critical z value.
	$\frac{t-41.2}{3.6}=-1.645$	M1	Use of \pm standardisation formula with μ, σ equated to a z-value, no continuity correction, allow $\sigma^{2}, \sqrt{ } \sigma$.
	$t=35.3$	A1	
		3	

Question	Answer	Marks	Guidance
$5(\mathrm{a})$	${ }^{5} \mathrm{P}_{2} \times{ }^{7} \mathrm{P}_{4}$ or $5 \times 4 \times 7 \times 6 \times 5 \times 4$	$\mathbf{M 1}$	${ }^{5} \mathrm{P}_{x} \times{ }^{7} \mathrm{P}_{\mathrm{y}}, 1 \leqslant x \leqslant 4,1 \leqslant y \leqslant 6$
	16800	$\mathbf{A 1}$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
5(b)	Method 1 [Identify scenarios]		
	With A and no 5: $8 \times{ }^{6} \mathrm{P}_{4}$ or $(1 \times 4 \times 6 \times 5 \times 4 \times 3) \times 2$ or $4 \mathrm{C} 1 \times 2!\times 6 \mathrm{P} 4=$	M1	One number of ways correct, accept unsimplified.
	With 5 and no A: ${ }^{4} \mathrm{P}_{2} \times 4 \times{ }^{6} \mathrm{P}_{3}$ or $(4 \times 3 \times 1 \times 6 \times 5 \times 4) \times 4$ or $4 \mathrm{P} 2 \times 6 \mathrm{C} 3 \times$ $4!=5760$ With A and 5: $8 \times 4 \times{ }^{6} \mathrm{P}_{3}$ or $(4 \times 1 \times 1 \times 6 \times 5 \times 4) \times 8$ or $4 \mathrm{C} 1 \times 2!\times 6 \mathrm{C} 3 \times$ $4!=3840$	M1	Add 2 or 3 identified correct scenarios only, accept unsimplified.
	[Total =] 12480	A1	CAO
	Method 2 [total number of codes - number of codes with no A or 5]		
	No A or $5:(4 \times 3) \times(6 \times 5 \times 4 \times 3)=4320$	M1	${ }^{4} \mathrm{P}_{2} \times{ }^{6} \mathrm{P}_{4}$ or ${ }^{4} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{4}$ seen, accept unsimplified.
	Required number $=$ their $(\mathbf{a})-$ their 4320	M1	Their 5(a) (or correct) - their (No A or 5) value.
	12480	A1	
	Method 3 [subtracting double counting]		
	With $\mathrm{A}^{4} \mathrm{P}_{1} \times{ }^{7} \mathrm{P}_{4} \times 2$ or ${ }^{4} \mathrm{C}_{1} \times 2 \times{ }^{7} \mathrm{C}_{4} \times 4!=6720$ With $5{ }^{5} \mathrm{P}_{2} \times{ }^{6} \mathrm{P}_{3} \times 4$ or ${ }^{5} \mathrm{C}_{2} \times 2 \times{ }^{6} \mathrm{C}_{3} \times 4!=9600$ With A and $5={ }^{4} \mathrm{P}_{1} \times{ }^{6} \mathrm{P}_{3} \times 8$ or $4 \mathrm{C} 1 \times 2!\times 6 \mathrm{C} 3 \times 4!\times 8=3840$	M1	One outcome correct, accept unsimplified.
	Required number $=6720+9600-3840$	M1	Adding 'with a' to 'with 5' and subtracting 'A and 5'.
	12480	A1	CAO
		3	

Question	Answer	Marks	Guidance
5(c)	Method 1 - number of successful codes divided by total		
	$(1 \times) 3 \times{ }^{5} \mathrm{P}_{2}$	M1	$3 \times{ }^{5} \mathrm{P}_{n}, n=2,3$. Condone $3 \times{ }^{5} \mathrm{C}_{2}, \mathrm{no}+$ or.-
	$\text { Probability }=\frac{\text { their } 3 \times 5 P 2}{\text { their } 16800}$	M1	$\text { Probability }=\frac{\text { their } 60}{\text { their } 16800} .$
	$\frac{1}{280}, 0.00357$	A1	
	Method 2 - product of probabilities of each part of code		
	$\frac{1}{5} \times \frac{1}{4} \times \frac{1}{7} \times \frac{3}{6}\left(\times \frac{5}{5} \times \frac{4}{4}\right) \text { or } \frac{1}{5} \times \frac{1}{4} \times \frac{3 \times 5 P 2}{7 P 4}$	M1	$\frac{1}{5} \times \frac{1}{4} \times k$ where $0<k<1$ for considering letters.
		M1	$t \times \frac{1}{7} \times \frac{3}{6}$ or $t \times \frac{3 \times 5 P 2}{7 P 4}$ where $0<t<1$.
	$\frac{1}{280}$	A1	CAO
		3	

Question	Answer	Marks	Guidance
6(a)	$p+q+0.65=1$	B1	Sum of probabilities $=1$.
	$p+2 q+0.15=0.55$	B1	Use given information.
	Solve 2 linear equations	M1	Either a single expression with one variable eliminated formed or two expressions with both variables on the same side seen with at least one variable value stated.
	$p=0.3, \frac{3}{10}, \quad q=0.05, \frac{1}{20}$	A1	CAO, both WWW If M0 with correct answers SC B1.
		4	
6(b)	$\operatorname{Var}(X)=$ their $0.3+4 \times$ their $0.05+9 \times 0.05-0.55^{2}$	M1	Appropriate variance formula including $(\mathrm{E}(X))^{2}$, accept unsimplified.
	$0.6475\left[\frac{259}{400}\right]$	A1	CAO (must be exact).
		2	
6(c)	$1-\mathrm{P}(0,1,2)=1-\left({ }^{12} \mathrm{C}_{0} 0.3^{0} 0.7{ }^{12}+{ }^{12} \mathrm{C}_{1} 0.3^{1} 0.7^{11}+{ }^{12} \mathrm{C}_{2} 0.3^{2} 0.7{ }^{10}\right)$	M1	One correct term: ${ }^{12} \mathrm{C}_{\mathrm{x}} \mathrm{p}^{\mathrm{x}}(1-\mathrm{p})^{12-\mathrm{x}}$ for $0<\mathrm{x}<12$, $0<p<1$.
	$1-(0.01384+0.07118+0.16779)$	A1FT	Correct unsimplified expression, or better in final answer. Unsimplified expression must be seen to FT their p from 6(a) or correct.
	0.747	A1	
		3	
6(d)	$(0.95)^{8} \times 0.05=0.0332$ or $0.95^{8}-0.95^{9}=0.0332$	B1	Evaluated.
		1	

Question	Answer	Marks	Guidance
7(a)	Probabilities: $\frac{x+1}{x+10}, \frac{9}{x+10}, \frac{x}{x+10}, \frac{10}{x+10}$	B1	One probability correct in correct position.
		B1	Another probability correct in correct position.
		B1	Other two probabilities correct in correct positions.
		3	
7(b)	$\frac{4}{10} \times \text { their } \frac{10}{x+10}$	M1	Method consistent with their tree diagram.
	$\frac{4}{x+10}$	A1	AG
		2	

Question	Answer	Marks	Guidance
7(c)	$\begin{aligned} & \frac{4}{x+10}=\frac{1}{6} \\ & x+10=24, \quad x=14 \end{aligned}$	B1	Find value of x. Can be implied by correct probabilities in calculation.
	$\mathrm{P}(\mathrm{ARed} \mid \mathrm{BRed})=\mathrm{P}(\mathrm{ARed} \cap \mathrm{BRed}) \div \mathrm{P}(\mathrm{BRed})$$\frac{\frac{6}{10} \times \text { their } \frac{x+1}{x+10}}{\frac{6}{10} \times \text { their } \frac{x+1}{x+10}+\frac{4}{10} \times \text { their } \frac{x}{x+10}}=\frac{\frac{6}{10} \times \frac{15}{24}}{\frac{6}{10} \times \frac{15}{24}+\frac{4}{10} \times \frac{14}{24}}=\frac{\frac{3}{8}}{\frac{73}{120}}$	B1 FT	$\frac{6}{10} \times$ their $\frac{x+1}{x+10}$ as numerator or denominator of fraction.
		M1	$\frac{6}{10} \times$ their $\frac{x+1}{x+10}+\frac{4}{10} \times$ their $\frac{x}{x+10}$ seen anywhere.
		A1 FT	Seen as denominator of fraction.
	$\frac{45}{73}, 0.616[4 \ldots]$	A1	If B0 M0: SC B1 for $\frac{\frac{3}{8}}{\frac{73}{120}}$ or $\frac{0.375}{0.6083}$ SC B1 $\frac{45}{73}$ or 0.616 .
		5	

