

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability and Statistics MARK SCHEME Maximum Mark: 50 9709/52 March 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	athematics-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	${}^{38}C_{r}$ or ${}^{n}C_{34}$	M1	Either expression seen OE, no other terms, condone x1
	³⁸ C ₃₄	A1	Correct unsimplified OE
	73815	A1	If M0, SCB1 ${}^{38}C_{34} \ge k$, k an integer
		3	

Question	Answer	Marks	Guidance
2(a)	$\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^3 + \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^4$	M1	One correct term with 0
	$=\frac{4}{27} + \frac{8}{81} + \frac{16}{243} \left(=\frac{2432}{7776}\right)$	A1	Correct expression, accept unsimplified
	$=\frac{76}{243}$ or 0.313	A1	
		3	

March	2020
-------	------

Question	n Answer		Guidance
2(b) $x = 0$ 1 2 3 P(x) $\frac{8}{27}$ $\frac{12}{27}$ $\frac{6}{27}$ $\frac{1}{27}$		B1	Probability distribution table with correct values of x , no additional values unless with probability of 0 stated, at least one non-zero probability included
	$P(0) = \left(\frac{2}{3}\right)^3$	B1	1 correct probability seen (may not be in table) or 3 or 4 non-zero probabilities summing to 1
	$P(1) = \left(\frac{1}{3}\right) \left(\frac{2}{3}\right) \times 3$ $P(2) = \left(\frac{2}{3}\right) \left(\frac{1}{3}\right)^2 \times 3$	B1	All probabilities correct
	$P(3) = \left(\frac{1}{3}\right)^3$		
		3	
2(c)	$E(X) = \left[0 \times \frac{8}{27}\right] + 1 \times \frac{12}{27} + 2 \times \frac{6}{27} + 3 \times \frac{1}{27}$	M1	Correct method from <i>their</i> probability distribution table with at least 3 terms, $0 \le their P(x) \le 1$, accept unsimplified
	$= \left[\frac{0}{27}\right] + \frac{12}{27} + \frac{12}{27} + \frac{3}{27}$		
	= 1	A1	
		2	

9709/52

March	2020
-------	------

Question	Answer	Marks	Guidance
3(a)	$P(X > 87) = P\left(Z > \frac{87 - 82}{\sigma}\right) = 0.22$	M1	Using ± standardisation formula, not σ^2 , not $\sqrt{\sigma}$, no continuity correction
	$P\left(Z < \frac{5}{\sigma}\right) = 0.78$	B1	AWRT ±0.772 seen B0 for ±0.228
	$\left(\frac{5}{\sigma}\right) = 0.772$		
	$\sigma = 6.48$	A1	
		3	
3(b)	$P\left(-\frac{4}{\sigma} < Z < \frac{4}{\sigma}\right) = P\left(-0.6176 < Z < 0.6176\right)$	M1	Using ±4 used within a standardisation formula (SOI), allow σ^2 , $\sqrt{\sigma}$ and continuity correction
		M1	Standardisation formula applied to both <i>their</i> ± 4
	$\Phi = 0.7317$ Prob = $2\Phi - 1 = 2(0.7317) - 1$	M1	Correct area $2\Phi - 1$ oe linked to final solution
	= 0.463	A1	
		4	

1v1a1CII 2020

Question	Answer	Marks	Guidance
4(a)	$\frac{R^{\wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge}R}{\frac{9!}{3!6!}}$	M1	9! Alone on numerator, 3! $\times k$ or 6! $\times k$ on denominator
	= 84	A1	
		2	
4(b)	^ (B B B) ^ ^ ^ ^ ^ ^	M1	$\frac{7!}{6!} \times k$ or $7k$ seen, k an integer > 0
	$\frac{7!}{6!} \times \frac{8 \times 7}{2}$	M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n=7, 8$ or 9, m an integer > 0
		M1	n = 8 used in above expression
	= 196	A1	
	Alternative for question 4(b)		
	[Arrangements, blues together – Arrangements with blues together and reds together =] $\frac{9!}{2!6!} - \frac{8!}{6!}$	M1	9! Seen alone or as numerator with subtraction
	= [252 - 56]	M1	8! Seen alone or as numerator in a second term and no other terms
		M1	All terms divided by 6! x k, k an integer
	= 196	A1	
		4	

Question	Answer	Marks	Guidance
5(a)	$1 - P(6, 7, 8) = 1 - ({}^{8}C_{6} \ 0.7^{6} 0.3^{2} + {}^{8}C_{7} \ 0.7^{7} 0.3^{1} + 0.7^{8})$	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}, 0$
	= 1 - 0.55177	A1	Correct unsimplified expression, or better
	= 0.448	A1	
	Alternative method for question 5(a)		
	$ \begin{array}{l} P(0, 1, 2, 3, 4, 5) \\ = 0.3^8 + {}^8C_1 0.7^{1} 0.3^7 + {}^8C_2 0.7^2 0.3^6 + {}^8C_3 0.7^3 0.3^5 + \\ {}^8C_4 0.7^4 0.3^4 + {}^8C_5 0.7^5 0.3^3 \end{array} $	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}, 0$
		A1	Correct unsimplified expression, or better
	= 0.448	A1	
		3	
5(b)	Mean = $120 \times 0.7 = 84$ Var = $120 \times 0.7 \times 0.3 = 25.2$	B1	Correct mean and variance, allow unsimplified
	P(more than 75) = P $\left(z > \frac{75.5 - 84}{\sqrt{25.2}}\right)$	M1	Substituting <i>their</i> μ and σ into the ±standardising formula (any number), not σ^2 , not $\sqrt{\sigma}$
		M1	Using continuity correction 75.5 or 74.5
	P(z > -1.693)	M1	Appropriate area Φ , from final process, must be a probability
	= 0.955	A1	Allow 0.9545
		5	

Question	Answer	Marks	Guidance
6(a)	Box A Box B	B1	Both correct probs, box A
	10 Red	B1	2 probs correct for box B
	$ \begin{array}{c} \overline{15} \\ \overline{15} $	B1	All correct probs for box B
		3	
6(b)	$\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{9}{15}$	M1	Two 2 factor terms added, correct or FT <i>their</i> 6(a) .
	$=\frac{44}{120}\left[\frac{11}{30} \text{ or } 0.367\right]$	A1	OE
		2	

Marc	h 2	020
		~ - ~

Question	Answer	Marks	Guidance
6(c)	$P(A \text{ blue } B \text{ blue}) = \frac{P(A \text{ blue } \cap B \text{ blue})}{P(B \text{ blue})}$	M1	<i>their</i> $\frac{1}{8} \times \frac{6}{15}$ seen as numerator or denom of fraction
	$=\frac{\frac{1}{8}\times\frac{6}{15}}{\frac{7}{8}\times\frac{5}{15}+\frac{1}{8}\times\frac{6}{15}}=\frac{\frac{1}{20}}{\frac{41}{120}}$		
		M 1	<i>their</i> $\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}$ seen
		M 1	<i>their</i> $\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}$ seen as denominator
	$=\frac{6}{41}$ or 0.146	A1	
		4	

Question	Answer	Marks	Guidance
7(a)	15, 63, 129, 150	B 1	Correct cumulative frequencies seen (may be on graph)
		B1	$0 \leq$ Horizontal axis $\leq 30, 0 \leq$ vertical axis ≤ 150 Labels correct: length cm, cf
	130	M1	At least 3 points plotted at upper end points (e.g. allow 9, 9.5, 10) with a linear horizontal scale.
	110 90 90 90 90 90 90 90 90 90 9	A1	Linear vertical scale, all points at correct upper end points (9.5 etc.), curve drawn accurately, joined to (0,0) (condone (-0.5, 0))
		4	
7(b)	60% of 150 = 90	M1	90 seen or implied by use on graph
	Approx. 16.5 [cm]	A1FT	FT <i>their</i> increasing cumulative frequency graph, Use of graph must be seen.
			If no clear evidence of use of graph SCB1FT correct value from <i>their</i> graph
		2	

Question	Answer	Marks	Guidance
7(c)	Midpoints: 4.75, 12, 17, 25	M1	At least 3 correct midpoints used (39449.4375 implies M1)
	Var = $\frac{4.75^2 \times 15 + 12^2 \times 48 + 17^2 \times 66 + 25^2 \times 21}{150} - 15.295^2$	M1	Using midpoints ± 0.5 in correct var formula, including subtraction of <i>their</i> μ^2 .
	= 29.1	A1	
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability and Statistics 1 MARK SCHEME Maximum Mark: 50 9709/52 March 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	nematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

9709/52

Question	Answer	Marks	Guidance
1(a)	$\left[\left(\frac{4}{5}\right)^7 \frac{1}{5} = \right] \frac{16384}{390625} \text{ or } 0.0419[43]$	B1	Evaluated, final answer.
		1	
1(b)	$1 - \left(\frac{4}{5}\right)^5 \text{ or } \frac{1}{5} + \frac{4}{5} \times \frac{1}{5} \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5}$	M1	$1 - p^{n} n = 5,6$ or $p + pq + pq^{2} + pq^{3} + pq^{4} (+ pq^{5})$ $0Sum of a geometric series may be used.$
	$\frac{2101}{3125}$ or 0.672[32]	A1	Final answer.
	Alternative method for question 1(b)		
	$[P(\text{at least 1 three scored in 5 throws}) =] \\ \left(\frac{1}{5}\right)^{5} + {}^{5}C_{4}\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right) + {}^{5}C_{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{2} + {}^{5}C_{2}\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{3} + {}^{5}C_{4}\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)^{4}$	M1	$(p)^{5} + {}^{5}C_{4}(p)^{4}(q) + {}^{5}C_{3}(p)^{3}(q)^{2} + {}^{5}C_{2}(p)^{2}(q)^{3} + {}^{5}C_{1}(p)(q)^{4}$ or $(p)^{6} + {}^{6}C_{5}(p)^{5}(q) + {}^{6}C_{4}(p)^{4}(q)^{2} + {}^{6}C_{3}(p)^{3}(q)^{3}$ $+ {}^{6}C_{2}(p)^{2}(q)^{4} + {}^{6}C_{1}(p)(q)^{5}, 0At least first, last and one intermediate term is required toshow pattern of terms if not all terms stated.$
	$\frac{2101}{3125}$ or 0.672[32]	A1	Final answer.
		2	

March 2

Question	Answer	Marks	Guidance
2(a)	$0.2[\times 1] + 0.45 \times 0.4 + 0.35 \times 0.3$	M1	$0.2 [\times 1] + 0.45 \times b + 0.35 \times c, b = 0.4, 0.6 c = 0.3, 0.7$
	$0.485 \text{ or } \frac{97}{200}$	A1	
		2	
2(b)	$P(Y \overline{H}) = \frac{P(Y \cap \overline{H})}{P(\overline{H})} = \frac{0.35 \times 0.7}{1 - their(\mathbf{a})} = \frac{0.245}{0.515}$	B1	0.35×0.7 or 0.245 seen as numerator or denominator of fraction.
	I(II) I then (a) one is	M1	0.515 or 1 - their (a) or $[0.3 \times 0 +] 0.45 \times d + 0.35 \times e$, where $d = their b'$, $e = their c'$ seen as denominator of fraction.
	$0.476 \text{ or } \frac{49}{103}$	A1	$0.4757 \leq p \leq 0.476$
		3	

Question	Answer	Marks	Guidance
3(a)	$P\left(\left(\frac{85-96}{18}\right) < z < \left(\frac{100-96}{18}\right)\right)$	M1	Use of ±standardisation formula once with appropriate values substituted, no continuity correction, not σ^2 or $\sqrt{\sigma}$.
	$P(-0.6111 < z < 0.2222) = \Phi(0.2222) + \Phi(0.6111) - 1 = 0.5879 + 0.7294 - 1$	M1	Appropriate area Φ , from final process, must be probability. Use of $(1 - z)$ implies M0.
	0.317	A1	Final answer which rounds to 0.317.
		3	

Question	Answer	Marks	Guidance
3(b)	$z = \pm 1.175$	B1	$1.17 \le z \le 1.18 \text{ or } -1.18 \le z \le -1.17$
	$-1.175 = \frac{t - 96}{18}$	M1	An equation using ±standardisation formula with a <i>z</i> -value, condone σ^2 , $\sqrt{\sigma}$ or continuity correction. E.g. equating to 0.88, 0.12, 0.8106, 0.1894, 0.5478, 0.4522, ±0.175 or ±2.175 implies M0.
	74·85 or 74·9	A1	$74.85 \leqslant t \leqslant 74.9$
		3	

Question				Ans	wer		Marks	Guidance
4(a)	x prob	1 4k	2 6k	3 6k	4 4k		B1	Table with \times values and one correct probability expressed in terms of <i>k</i> . Condone any additional \times values if probability stated as 0.
							B1	Remaining 3 probabilities correct expressed in terms of k – condone if the first correct probability is not in table.
							2	
4(b)	$[4k+6k+6k+4k=1] \ k = \frac{1}{20} \ (=0.05)$							Correct value for k SOI. May be calculated in 4(a). SC B1 If denominator 20k used throughout.
	E(X) = (= 2.5)	$1 \times \frac{4}{20} + 2$	$2 \times \frac{6}{20} + 3$	$\times \frac{6}{20} + 4$	$\times \frac{4}{20} = \frac{4}{2}$	$\frac{4}{20} + \frac{12}{20} + \frac{18}{20} + \frac{16}{20}$	M1	Accept unsimplified expression. Condone $4k + 12k + 18k + 16k$. May be implied by use in Variance expression. Special ruling: Allow use of denominator 20k.
	$Var(X) = 1^{2} \times \frac{4}{20} + 2^{2} \times \frac{6}{20} + 3^{2} \times \frac{6}{20} + 4^{2} \times \frac{4}{20} - \left(their 2\frac{1}{2}\right)^{2}$ = $(4 + 24 + 54 + 64) \times their 0.05 - (their 2.5)^{2}$ Or $(1 - 2.5)^{2} \times \frac{4}{20} + (2 - 2.5)^{2} \times \frac{6}{20} + (3 - 2.5)^{2} \times \frac{6}{20} + (4 - 2.5)^{2} \times \frac{4}{20}$							Appropriate variance formula with <i>their</i> numerical probabilities using <i>their</i> $(E(X))^2$, accept unsimplified, with <i>their k</i> substituted. Special ruling: If denominator 20 <i>k</i> used throughout, accept appropriate variance formula in terms of <i>k</i> .
	1.05						A1	AG, NFWW.
							4	

Question			А	nswer			Marks	Guidance	
5(a)								B1	Correct cumulative frequencies seen (may be by table or
	Distance	0-4	5-10	11-20	21-30	31-40	41-60		plotted accurately on graph), condone 12 not stated.
	Upper boundary	4.5	10.5	20.5	30.5	40.5	60.5		
	Cumulative frequency	12	28	60	126	146	150		
								B1	Axes labelled 'distance (or d) [in] km' from 0 to 60 and 'cumulative frequency' (or cf) from 0 to 150.
								M1	At least 5 points plotted at upper end points for <i>d</i> (allow upper boundary ± 0.5) with a linear scale for distance, condone $0 - 4$ interval inaccurate, no scale break on axis. Not bar graph/histogram unless clear indication of upper end point only of each bar.
								A1	All plotted correctly at correct upper end points (4.5 etc.) with both scales linear ($0 \le d \le 60$, $0 \le cf \le 150$), curve drawn accurately joined to (0,0), cf line>150, no daylight if >150.
								4	
5(b)	70% of 150 = 1	105						M1	105 seen or implied by indication on grid.
	Approx. 27							A1 FT	Strict FT <i>their</i> increasing cumulative frequency graph, use of graph must be seen. If no clear evidence of use of graph: SC B1 FT correct value from <i>their</i> increasing cumulative frequency graph.
								2	

March	2021
	-

Question	Answer	Marks	Guidance
5(c)	Midpoints: 2.25, 7.5, 15.5, 25.5, 35.5, 50.5	B1	At least 5 correct midpoints seen.
	$Mean = \frac{2.25 \times 12 + 7.5 \times 16 + 15.5 \times 32 + 25.5 \times 66 + 35.5 \times 20 + 50.5 \times 4}{150}$ $= \frac{27 + 120 + 496 + 1683 + 710 + 202}{150}$	M1	Using 6 midpoint attempts (e.g. $2 \cdot 25 \pm 0 \cdot 5$), condone one error not omission, multiplied by frequency, accept unevaluated, denominator either correct or <i>their</i> Σ frequencies.
	$\left[= \frac{3238}{150} \right] = 21.6, \ 21\frac{44}{75}$	A1	Evaluated, WWW, accept 21.5[866].
		3	

Question	Answer	Marks	Guidance
6(a)	$\frac{11!}{2!2!2!}$	M1	11! alone as numerator. $2! \times m! \times n!$ on denominator, $m = 1, 2, n = 1, 2$. no additional terms, no additional operations.
	4989600	A1	Exact answer only.
		2	

Question	Answer	Marks	Guidance
6(b)	Method 1 R ^ ^ ^ ^ ^ R		
	Arrange the 7 letters CTEPILL = $\frac{7!}{2!}$	B1	$\frac{7!}{2!} \times k$ seen, k an integer > 1.
	Number of ways of placing As in non-adjacent places = ${}^{8}C_{2}$ $\frac{7!}{2!} \times {}^{8}C_{2}$	M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n = 7, 8$ or 9, m an integer > 1.
		M1	$\frac{7!}{p!} \times {}^{8}C_{2} \text{ or } \frac{7!}{p!} \times {}^{8}P_{2}, p \text{ integer} \ge 1, \text{ condone } 2520 \times 28.$
	= 70560	A1	Exact answer only. SC B1 70560 from M0, M1 only.
	Method 2 [Arrangements Rs at ends – Arrangements Rs at ends and As	together]	
	Total arrangements with R at beg. and end = $\frac{9!}{2!2!}$	M1	$\frac{9!}{2!m!} - k, 90720 > k \text{ integer} > 1, m = 1, 2.$
	Arrangements with R at ends and As together $=\frac{8!}{2!}$ With As not together $=\frac{9!}{-\frac{8!}{2!}}$	B1	$s - \frac{8!}{2!}$, s an integer >1
	2!2! 2!	M1	$\frac{9!}{p} - \frac{8!}{q}$, p, q integers ≥ 1 , condone 90720 - 20160.
	[90720 - 20160] = 70560	A1	Exact answer only. SC B1 70560 from M0, M1 only.
		4	

March 2	021
---------	-----

Question	Answer	Marks	Guidance
6(c)	Method 1		
	$\begin{array}{ccc} R R A L & {}^{5}C_{2} & = 10 \\ R R A L L & {}^{5}C_{1} & = 5 \\ P R A A L & {}^{5}C & = 5 \end{array}$	M1	⁵ C _x seen alone or ⁵ C _x × k, $2 \ge k \ge 1$, k an integer, $0 < x < 5$ linked to an appropriate scenario.
	$\begin{array}{ccc} R R A A L L & C_1 & -3 \\ R R A A L L & = 1 \end{array}$	A1	${}^{5}C_{2} \times k, k = 1 \text{ oe or } {}^{5}C_{1} \times m, m = 1,2 \text{ oe alone.}$ SC if ${}^{5}C_{x}$ not seen. B2 for 5 or 10 linked to the appropriate scenario WWW.
		M1	Add outcomes from 3 or 4 identified correct scenarios only, accept unsimplified. ${}^{2}C_{w} \times {}^{2}C_{x} \times {}^{2}C_{y} \times {}^{5}C_{z}$, $w+x+y+z=6$ identifies w Rs, × As and y Ls.
	[Total =] 21	A1	WWW, only dependent on 2nd M mark. Note: ${}^{5}C_{2} + {}^{5}C_{1} + {}^{5}C_{1} + 1 = 21$ is sufficient for 4/4.
			SC not all (or no) scenarios identified. B1 $10 + 5 + 5 + 1$ DB1 = 21
	Method 2 – Fixing RRAL first. N.B. No other scenarios can be present anywhere in solution.		
	$R R A L^{\wedge \wedge} = {}^{7}C_{2}$	M1	⁷ C _x seen alone or ⁷ C _x × k, $2 \ge k \ge 1$, k an integer, $0 \le x \le 7$. Condone ⁷ P _x or ⁷ P _x × k, $2 \ge k \ge 1$, k an integer, $0 \le x \le 7$.
		M1	$^{7}\mathrm{C}_{2} \times k, \ 2 \geqslant k \geqslant 1 \mathrm{oe}$
		A1	$^{7}C_{2} \times k, k = 1$ oe no other terms.
	[Total =] 21	A1	Value stated.
		4	

March 2	2021
---------	------

Question	Answer	Marks	Guidance
7(a)(i)	$\left[\frac{104+31}{400}\right] = \frac{135}{400}, \frac{27}{80}, 0.3375$	B1	Evaluated, exact value.
		1	
7(a)(ii)	Method 1		
	$P(M) = \frac{180}{400}, 0.45 P(S) = \frac{135}{400}, 0.3375 P(M \cap S) = \frac{31}{400}, 0.0775$	M1	<i>Their</i> $P(M) \times their P(S)$ seen, accept unsimplified.
	$\frac{180}{400} \times \frac{135}{400} = \frac{243}{1600}, 0.151875 \neq \frac{31}{400} $ so NOT independent		
		A1	$P(M)$, $P(S)$ and $P(M \cap S)$ notation seen, numerical comparison and correct conclusion, WWW.
	Method 2		
	$P(M \cap S) = \frac{31}{400} P(S) = \frac{135}{400} P(M) = \frac{180}{400}$ 31	M1	$[P(M S) =] \frac{\text{their } P(M \cap S)}{\text{their } P(S)} \text{ (oe) seen, accept unsimplified.}$
	$P(M S) = \frac{\overline{400}}{\frac{135}{400}} = \frac{31}{135}, 0.2296 \neq \frac{180}{400} \text{ so NOT independent}$		
		A1	$P(M)$, $P(S)$ and $P(M \cap S)$ notation seen, numerical comparison and correct conclusion, WWW.
		2	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

March 2021

Question	Answer	Marks	Guidance
7(b)(i)	Method 1 [1 – P(0,1,2)]		
	$= 1 - ({}^{10}C_0 0.3^0 0.7^{10} + {}^{10}C_1 0.3^1 0.7^9 + {}^{10}C_2 0.3^2 0.7^8)$	M1	${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10, 0 < p < 1$, any <i>p</i> .
	= 1 - (0.028248 + 0.121061 + 0.233474)	A1	Correct expression, accept unsimplified, condone omission of final bracket, condone recovery from poor notation.
	= 0.617	A1	Accept $0.61715 \le p \le 0.61722$, WWW.
	Method 2 [P(3,4,5,6,7,8,9,10) =]		
	$ {}^{10}C_3 0 \cdot 3^3 0 \cdot 7^7 + {}^{10}C_4 0 \cdot 3^4 0 \cdot 7^6 + {}^{10}C_5 0 \cdot 3^5 0 \cdot 7^5 $	M1	$^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10, 0 < p < 1$, any <i>p</i> .
	$+ {}^{10}C_9 0 \cdot 3^9 0 \cdot 7^1 + {}^{10}C_{10} 0 \cdot 3^{10} 0 \cdot 7^0$	A1	Correct unsimplified expression.
	= 0.617	A1	Accept $0.61715 \le p \le 0.61722$, WWW.
		3	

March 20	021	
----------	-----	--

Question	Answer	Marks	Guidance
7(b)(ii)	[p = 0.3] Mean = 0.3 × 90 = 27; variance = 0.3 × 90 × 0.7 = 18.9	B1	Correct mean and variance, allow unsimplified. Condone $\sigma = 4.347$ evaluated.
	$P(X < 32) = P\left(z < \frac{31.5 - 27}{\sqrt{18.9}}\right)$	M1	Substituting <i>their</i> μ and σ (not σ^2 , $\sqrt{\sigma}$) into the ±standardising formula with a numerical value for '31.5'.
		M1	Using either 31.5 or 32.5 within a ±standardising formula with numerical values for <i>their</i> μ and σ (condone σ^2 , $\sqrt{\sigma}$).
	$=\Phi(1.035)$	M1	Appropriate area Φ , from standardisation formula P($z <$) in final solution, must be probability.
	= 0.850	A1	Allow $0.8495 , final answer WWW.$
		5	

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/51 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles	Mathematics	Specific	Marking	Principles	
---	-------------	----------	---------	------------	--

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks
1(a)	Prob of 4 (from 1,3, 3,1 or 2,2) = $\frac{3}{36} = \frac{1}{12}$ AG	B1
		1
1(b)	$Mean = \frac{1}{\frac{1}{12}} = 12$	B1
		1
1(c)	$\left(\frac{11}{12}\right)^5 \times \frac{1}{12} = 0.0539 \text{ or } \frac{161051}{2985984}$	B1
		1
1(d)	$1 - \left(\frac{11}{12}\right)^7$	M1
	$0.456 \text{ or } \frac{16344637}{35831808}$	A1
		2
Question	Answer	Marks
----------	--	-------
2(a)	6!	M1
	720	A1
		2
2(b)	Total number: $\frac{9!}{3!2!}(30240)$	M1
	Number with Ls together = $\frac{8!}{3!}$ (6720)	M1
	Number with Ls not together = $\frac{9!}{3!2!} - \frac{8!}{3!}$ = 30 240 - 6720	M1
	23 520	A1
	Alternative method for question 2(b)	
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	
	$7! \times k$ in numerator, k integer ≥ 1	M1
	$8 \times 7 \times m$ in numerator or $8C2 \times m$, <i>m</i> integer ≥ 1	M1
	3! in denominator	M1
	23 520	A1
		4

Question					Answer	Marks
3(a)	x	0	1	2	3	B1
	Probability	$\frac{1}{56}$	$\frac{15}{56}$	$\frac{30}{56}$	$\frac{10}{56}$	
	(B1 for probab	oility distributi	on table with c	orrect outcom	e values)	
	$P(0) = \frac{3}{8} \times \frac{2}{7} \times \frac{2}{7}$ $P(1) = \frac{5}{8} \times \frac{3}{7} \times \frac{3}{7} \times \frac{1}{7}$ $P(2) = \frac{5}{8} \times \frac{4}{7} \times \frac{1}{7} \times \frac{1}{$	$\frac{1}{6} = \frac{1}{56}$ $\frac{2}{6} \times 3 = \frac{15}{56}$ $\frac{3}{6} \times 3 = \frac{30}{56}$ $\frac{3}{6} = \frac{10}{56}$ minator 8×7×6)			M1
	Any one proba	ability correct	(with correct o	utcome)		A1
	All probabiliti	es correct				A1
						4
3(b)	1 – P(8, 9, 10)	$= 1 - \left[{}^{10}C_8 0 \right]$	$64^8 0.36^2 + {}^{10}C$	$_{9}0.64^{9}0.36^{1}+$	0.64^{10}	M1
	1-(0.164156	+ 0.064852 + 0).11529)			M1
	0.759					A1
						3

Question	Answer	Marks
4	Scenarios: 2P 3V 2G ${}^{8}C_{2} \times {}^{4}C_{2} \times {}^{6}C_{3} = 28 \times 6 \times 20 = 3360$ 2P 4V 1G ${}^{8}C_{2} \times {}^{4}C_{1} \times {}^{6}C_{4} = 28 \times 4 \times 15 = 1680$ 3P 3V 1G ${}^{8}C_{3} \times {}^{4}C_{1} \times {}^{6}C_{3} = 56 \times 4 \times 20 = 4480$ 4P 2V 1G ${}^{8}C_{4} \times {}^{4}C_{1} \times {}^{6}C_{2} = 70 \times 4 \times 15 = 4200$ (M1 for ${}^{8}C_{r} \times {}^{4}C_{r} \times {}^{6}C_{r}$ with $\sum r = 7$)	M1
	Two unsimplified products correct	B1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total: 13 720	A1
		4

Question	Answer	Marks
5(a)	$\begin{array}{c} 0.3 \\ 0.35 \\ 0.44 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.2 \\$	
	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the prob 0	B1
		2
5(b)	$0.35 \times 0.3 + 0.44 \times 0.8 (+0)$	M1
	0.457	A1
		2

Question	Answer	Marks
5(c)	$P(\text{not B} \text{not fruit}) = \frac{P(B' \cap F')}{P(F')}$	M1
	$\frac{0.35 \times 0.7 + 0.21 \times 1}{1 - their(\mathbf{b})}$	M1
	$\frac{0.455}{0.543}$ (M1 for 1 – <i>their</i> (b) or summing three appropriate 2-factor probabilities, correct or consistent with <i>their</i> tree diagram as denominator)	M1
	0.838 or $\frac{455}{543}$	A1
		4

Question	Answer	Marks
6(a)	$P\left(\frac{50-54}{6.1} < z < \frac{60-54}{6.1}\right) = P\left(-0.6557 < Z < 0.9836\right)$	M1
	Both values correct	A1
	$\Phi (0.9836) - \Phi (-0.6557) = \Phi (0.9836) + \Phi (0.6557) - 1$ = 0.8375 + 0.7441 - 1 (Correct area)	M1
	0.582	A1
		4

Question	Answer	Marks
6(b)	$\frac{45-\mu}{\sigma} = -0.994$	B1
	$\frac{56-\mu}{\sigma} = 1.372$	B1
	One appropriate standardisation equation with μ , σ , z-value (not probability) and 45 or 56.	M1
	11 = 2.366 σ (M1 for correct algebraic elimination of μ or σ from <i>their</i> two simultaneous equations to form an equation in one variable)	M1
	$\sigma = 4.65, \mu = 49.6$	A1
		5

Question	Answer	Marks
7(a)	Class widths: 10, 5, 15, 20, 10	M1
	Frequency density = frequency/ <i>their</i> class width: 1.8, 4.8, 2, 1, 0.8	M1
	All heights correct on diagram (using a linear scale)	A1
	Correct bar ends	B1
	Bar ends: 10.5, 15.5, 30.5, 50.5, 60.5	B1
		5
7(b)	11-15 and 31-50	B1
	Greatest $IQR = 50 - 11 = 39$	B1
		2
7(c)	Mean = $\frac{18 \times 5.5 + 24 \times 13 + 30 \times 23 + 20 \times 40.5 + 8 \times 55.5}{100} = \frac{2355}{100} = 23.6$	B1
	$Var = \frac{18 \times 5.5^2 + 24 \times 13^2 + 30 \times 23^2 + 20 \times 40.5^2 + 8 \times 55.5^2}{100} - mean^2$	M1
	$\frac{77917.5}{100} - \text{mean}^2 = 224.57$	A1
	Standard deviation = 15.0 (FT <i>their</i> variance)	A1 FT
		4

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/52 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks
1	$\sum x - 50n = 144$	B1
	50n + 144 = 944	M1
	<i>n</i> = 16	A1
		3

Question	Answer	Marks
2(a)	$\frac{56}{500}$ or $\frac{14}{125}$ or 0.112	B1
		1
2(b)	$P(D S) = \frac{P(D \cap S)}{P(S)} = \frac{120}{280}$	M1
	$\frac{120}{280} \text{ or } \frac{3}{7}$	A1
		2

Question	Answer	Marks
2(c)	$P(hockey) = \frac{220}{500} = 0.44$	M1
	$P(\text{Amos or Benn}) = \frac{242}{500} = 0.484$	
	$P(\text{hockey} \cap A \text{ or } B) = \frac{104}{500} = 0.208$	
	$P(H) \times P(A \cup B) = P(H \cap (A \cup B))$ If independent	
	$\frac{220}{500} \times \frac{242}{500} = \frac{1331}{6250}$ so not independent	A1
		2

Question	Answer	Marks
3(a)	Median = 0.238	B1
	UQ = 0.245, LQ = 0.231, So IQR = 0.245 - 0.231	M1
	0.014	A1
		3

uestion	Ans	swer				
3(b)			LQ	М	UQ	
	A	0.220	0.231 FT	0.238 FT	0.245 FT	0.254
	В	0.211	0.224	0.232	0.243	0.256
	Mee	dians and	quartiles c	correctly plo	tted for A or	r <i>B</i>
	End	l points co	orrect for A	l or B		
	Con	npletely o	correct, inc	luding scale		
(c)	Len (B1	gths of ro for comp	ods produce parison of c	ed by machi central tende	ne A are lor ency)	nger.
	Len (B1	gths of ro for comp	ods produce parison of s	ed by machi spread)	ne A are les	s spread ou

Question	Answer	Marks
4(a)	$P(X < 25) = P\left(z < \frac{25 - 40}{12}\right) = P(z < -1.25)$	M1
	1-0.8944	M1
	0.106	A1
		3
4(b)	0.8944 divided by 3 (M1 for 1 – <i>their</i> (a) divided by 3)	M1
	0.298 AG	A1
		2
4(c)	0.2981 gives $z = 0.53$	B1
	$\frac{h-40}{12} = 0.53$	M1
	<i>h</i> = 46.4	A1
		3

Question	Answer						Marks
5(a)		1	1	2	2	3	M1
	1	1	1	2	2	3	
	2	2	2	2	2	3	
	3	3	3	3	3	3	
	$\frac{7}{15}$ AG						A1
							2
5(b)	x		1	2		3	B1
	Probabi	lity	$\frac{2}{15}$	$\frac{6}{15}$		$\frac{7}{15}$	
	P(1) or P	(2) corre	ect				B1
	3 rd proba	bility co	rrect, FT s	um to 1			B1
							3

Question	Answer	Marks
5(c)	$E(X) = \frac{2+12+21}{15} = \frac{35}{15} = \frac{7}{3}$	B1
	$Var(X) = \frac{1^2 \times 2 + 2^2 \times 6 + 3^2 \times 7}{15} - \left(\frac{7}{3}\right)^2$	M1
	$\frac{22}{45}(0.489)$	A1
		3

Question	Answer	Marks
6(a)	$\frac{8!}{3!}$	M1
	6720	A1
		2

Question	Answer	Marks
6(b)	Total number = $\frac{10!}{2!3!}$ (302400) (A)	B1
	With Es together = $\frac{9!}{3!}$ (60480) (B)	B1
	Es not together = $their(A) - their(B)$	M1
	241920	A1
	Alternative method for question 6(b)	
	$\frac{\overset{\wedge}{3!}}{\overset{\vee}{3!}} \times \frac{\overset{\wedge}{3!}}{\overset{\wedge}{2}} \xrightarrow{\overset{\wedge}{3!}} \xrightarrow{\overset{\wedge}{3!} \xrightarrow{\overset{\wedge}{3!}} \xrightarrow{\overset{\wedge}{3!}} \xrightarrow{\overset{\wedge}{3!}} \xrightarrow{\overset{\wedge}{3!} \xrightarrow{\overset{\wedge}{3!}} \xrightarrow{\overset{\wedge}{3!}} \xrightarrow{\overset{\wedge}{3!} \xrightarrow{\overset{\wedge}{3!}} \xrightarrow{\overset{\wedge}{3!} \xrightarrow{\overset{\vee}{3!}} \xrightarrow{\overset{\vee}{3!} \xrightarrow{\overset{\vee}{3!}} \xrightarrow{\overset{\vee}{3!} \xrightarrow{\overset{\vee}{3!}} \xrightarrow{\overset{\vee}{3!} \xrightarrow{\overset{\vee}{3!}} \xrightarrow{\overset{\vee}{3!} \xrightarrow{\overset{\vee}{3!}} \xrightarrow{\overset{\vee}{3!} \xrightarrow{\overset{\vee}{3!} \xrightarrow{\overset{\vee}{3!} \xrightarrow{\overset{\vee}{3!}} \xrightarrow{\overset{\vee}{3!} {3!} \xrightarrow{\overset{\vee}{3!} \xrightarrow{\overset{\times}{3$	
	8! × k in numerator, k integer ≥ 1 , denominator ≥ 1	B1
	$3! \times m$ in denominator, <i>m</i> integer ≥ 1	B1
	<i>Their</i> $\frac{8!}{3!}$ Multiplied by ${}^{9}C_{2}$ (OE) only (no additional terms)	M1
	241920	A1
		4

Question	Answer	Marks
6(c)	Scenarios: $E M M M = {}^{5}C_{0} = 1$ $E M M = {}^{5}C_{1} = 5$ $E M _ {}^{5}C_{2} = 10$	M1
	Summing the number of ways for 2 or 3 correct scenarios	M1
	Total = 16	A1
		3

Question	Answer	Marks
7(a)	$ \begin{array}{l} 1 - P(10, 11, 12) \\ = 1 - [{}^{12}C_{10}0.72^{10}0.28^2 + {}^{12}C_{11}0.72^{11}0.28^1 + 0.72^{12}] \end{array} $	M1
	1 - (0.19372 + 0.09057 + 0.01941)	A1
	0.696	A1
		3
7(b)	$0.28^3 \times 0.72 = 0.0158$	B1
		1

Question	Answer	Marks
7(c)	Mean = $100 \times 0.72 = 72$ Var = $100 \times 0.72 \times 0.28 = 20.16$	M 1
	P(less than 64) = P $\left(z < \frac{63.5 - 72}{\sqrt{20.16}}\right)$ (M1 for substituting <i>their</i> μ and σ into ±standardisation formula with a numerical value for '63.5')	M1
	Using either 63.5 or 64.5 within a ±standardisation formula	M 1
	Appropriate area Φ , from standardisation formula P(z<) in final solution = P(z < -1.893)	M1
	0.0292	A1
		5

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/53 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks
1(a)	$\begin{array}{c} 0.6 \\ 0.2 \\ 0.45 \\ 0.45 \\ 0.35 \\ W \\ 1 \\ 0 \\ NE \end{array}$	
	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the probability 0.	B1
		2
1(b)	$P(C E) = \frac{P(C \cap E)}{P(E)} = \frac{0.2 \times 0.6}{0.2 \times 0.6 + 0.45 \times 0.1 + 0.35 \times 1}$	M1
	Summing three appropriate 2-factor probabilities	M1
	$\frac{0.12}{0.515}$	A1
	0.233 or $\frac{12}{515}$	A1
		4

Question	Answer	Marks
2(a)	$0.22^3 = 0.0106$	B1
		1
2(b)	$P(2, 3, 4) = {}^{16}C_2 \ 0.22^2 0.78^{14} + {}^{16}C_3 0.22^3 0.78^{13} + {}^{16}C_4 0.22^4 0.78^{12}$	M1
	0.179205 + 0.235877 + 0.216221	A1
	0.631	A1
		3

Question	Answer	Marks
3(a)	$P(X < 21) = P\left(z < \frac{21 - 15.8}{4.2}\right) = \Phi(1.238)$	M1
	0.892	A1
		2
3(b)	$z = \pm 0.674$	B1
	$\frac{k-15.8}{4.2} = 0.674$	M1
	18.6	A1
		3

Question							Ans	wer		Marks
4(a)	-1	0	0	1						
	0	1	1	2						
	2	3	3	4						
	x		-1	0	1	2	3	4		
	Probat	oility	$\frac{1}{12}$	$\frac{3}{12}$	$\frac{3}{12}$	$\frac{2}{12}$	$\frac{2}{12}$	$\frac{1}{12}$		
	Probabi	lity dist	ribution t	able with	correct sc	ores with a	t least one	probability		B1
	At least 4 probabilities correct							B1		
	All prob	abilities	s correct							B1
										3
4(b)	E(X) =	-1+0+	-3+4+6 12	$\frac{16}{12} = \frac{16}{12}$	$=\frac{4}{3}$					B1
	Var(X)	_ 1+0+	+3+8+1 12	8+16-($\left(\frac{4}{3}\right)^2$					M1
	$\frac{37}{18} (= 2)$.06)								A1
										3

Question	Answer	Marks
5(a)	$\frac{1}{\frac{1}{4}} = 4$	B1
		1
5(b)	$\frac{9}{64}$ (=0.141)	B1
		1
5(c)	$P(X < 6) = 1 - \left(\frac{3}{4}\right)^5$	M1
	(FT <i>their</i> probability/mean from part (a))	
	0.763	A1
		2
5(d)	$Mean = 80 \times 0.25 = 20$ Var = 80 × 0.25 × 0.75 = 15	M1
	P(more than 25) = P $\left(z > \frac{25.5 - 20}{\sqrt{15}}\right)$	M1
	P(z > 1.42)	M1
	1-0.9222	M1
	0.0778	A1
		5

Question	1 Answer	Marks		
6(a)	AB			
	2 6			
	5 2 0 3 0 1 5 8			
	9 7 2 1 1 4 1 2 2 7 9			
	3 2 5 2			
	4 6			
	KEY 1 4 2 means \$41,000 for A and \$42,000 for B			
	Correct stem			
	Correct A on LHS			
	Correct B on same diagram	B1		
	Correct key for <i>their</i> diagram, both companies identified and correct units	B1		
		4		
6(b)	Median = [\$]42 000	B1		
	$LQ = [\$]35\ 000$ $UQ = [\$]52\ 000$	B1		
	IQR = [\$]17 000 (FT if $49000 \le UQ \le 53000 - 32000 \le LQ \le 41000$)	B1 FT		
		3		

Question	Answer	Marks
6(c)	Sum of given 11 numbers is 433 000	M1
	Sum of 12 numbers, including new = $38500 \times 12 = 462000$	M1
	Difference = new salary = [\$]29 000	A1
		3

Question	Answer	Marks
7(a)	$\frac{9!}{2!2!} = 90\ 720$	B 1
		1
		1
7(b)	$\frac{6!}{2!}$	M1
	360	A1
		2

Question	Answer	Marks
7(c)	2 Es together = $\frac{8!}{2!}$ (= 20160)	M1
	Es not together = $90720 - 20160 = 70560$	M1
	$Probability = \frac{70560}{90720}$	M1
	$\frac{7}{9}$ or 0.778	A1
	Alternative method for question 7(c)	
	$\frac{7!}{2!} \times \frac{8 \times 7}{2} = 70560$	
	7! × k in numerator, k integer ≥ 1 , denominator ≥ 1	M1
	Multiplying by ⁸ C ₂ OE	M1
	$Probability = \frac{70560}{90720}$	M1
	$\frac{7}{9}$ or 0.778	A1
		4

Question	Answer	Marks
7(d)	Scenarios are: $E L \ 5C_3 10$ $E E L _ 5C_2 10$ $E _ 5C_4 5$ $E E _ 5C_3 10$	M1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total = 35	A1
		3

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/51 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.
Math	nematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	RRRRB ${}^{8}C_{4} \times {}^{4}C_{1} = 280$ BBBBR ${}^{8}C_{1} \times {}^{4}C_{4} = 8$ RRRRR ${}^{8}C_{5} = 56$	M1	⁸ C _x × ⁴ C _y with $x + y = 5$. x, y both integers, $1 \le x \le 5$, $0 \le y \le 4$ condone ⁸ C ₁ × 1
		A1	Two correct outcomes evaluated
		M1	Add 2 or 3 identified correct scenarios only (no additional terms, not probabilities)
	[Total =] 344	A1	WWW, only dependent on 2nd M mark
		4	SC not all (or no) scenarios identified B1 280 + 8 + 56 DB1 344

Question	Answer	Marks	Guidance
2	$\left[P\left(\left(\frac{25.2 - (25.5 + 0.50)}{0.4}\right) < z < \left(\frac{25.2 - (25.2 - 0.50)}{0.4}\right)\right)\right]$ $= P\left(-\frac{0.5}{0.4} < z < \frac{0.5}{0.4}\right)$	M1	Use of \pm Standardisation formula once; no continuity correction, σ^2 , $\sqrt{\sigma}$
	$\begin{bmatrix} = 2\Phi(1.25) - 1 \end{bmatrix} \\ = 2 \times 0.8944 - 1$	A1	For AWRT 0.8944 SOI
		M1	Appropriate area $2\Phi - 1$ OE, from final process, must be probability
	0.7888	A1	Accept AWRT 0.789
	Number of rods = 0.7888×500 = 394 or 395	B1FT	Correct or FT <i>their</i> 4SF (or better) probability, final answer must be positive integer, not 394.0 or 395.0, no approximation/rounding stated, only 1 answer
		5	

9709/51

Question	Answer	Marks	Guidance
3(a)	$\left[\frac{8!}{3!}\right] = 6720$	B1	NFWW, must be evaluated
		1	
3(b)	$__L E D __:$ With LED together: $\frac{6!}{2!}$	M1	$\frac{6!}{k}$ or $\frac{5!x6}{k}$ $k \ge 1$ and no other terms
		M1	$\frac{m}{2!}$, <i>m</i> an integer, $m \ge 5$
	360	A1	CAO
		3	
3(c)	Method usingA _D: Arrange the 6 letters RELESE = $\frac{6!}{3!}$ [= 120]	*M1	$\frac{6!}{3!} \times k$ seen, k an integer > 0
	Multiply by number of ways of placing AD in non-adjacent places = their $120 \times {}^{7}P_{2}$ [= 5040]	*M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n = 6, 7$ or 8, m an integer > 0
	$[Probability =] \frac{their 5040}{their 6720}$	DM1	Denominator = <i>their</i> (a) or correct, dependent on at least one M mark already gained.
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	A1	
	Alternative method for Question 3(c)		
	Method using 'Total arrangements – Arrangements with A and D	*M1	<i>Their</i> $6720 - k$, <i>k</i> a positive integer
	Their $6720 - \frac{7! \times 2}{3!} = 5040$	*M1	$(m-)\frac{7 \ltimes k}{3!}, k=1,2$

Question	Answer	Marks	Guidance
	$[Probability =] \frac{their 5040}{their 6720}$	DM1	With denominator = <i>their</i> (a) or correct, dependent on at least one M mark already gained.
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	A1	
	Alternative method for Question 3(c)		
	Method using '1 – Probability of arrangements with A and D together': $\frac{7!\times 2}{3!}$ [= 1680]	*M1	$\frac{7 \bowtie k}{3!}, k = 1, 2$
	$[Probability =] \frac{their 1680}{their 6720}$	*M1	With denominator = <i>their</i> (a) or correct
	$1 - \frac{their 1680}{their 6720}$	DM1	1 - m, $0 < m < 1$, dependent on at least one M mark already gained
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	A1	
		4	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(a)	0.3 P P	B1	Fully correct labelled tree diagram for each pair of branches clearly identifying written and practical, pass and fail for each intersection (no additional branches)
	0.8 W1 P 0.3 P P	B1	'One written test' branch all probabilities (or %) correct
	0.7 PF 0.6 W2 P 0.7 PF 0.7 PF 0.7 PF	B1	'Two written tests' branch all probabilities (or %) correct, condone additional branches after W2F with probabilities 1 for PF and 0 for PP
		3	
4(b)	$[P(W1P) \times P(PP) + P(W1F) \times P(W2P) \times P(PP)]$ 0.8×0.3+0.2×0.6×0.3	M1	Consistent with <i>their</i> tree diagram or correct
	0.276 or $\frac{69}{250}$	A1	
		2	
4(c)	$P(W1 P) = \frac{P(W1 \cap \text{Practical})}{P(\text{getting place})} = \frac{0.8 \times 0.3}{their(b)} \left[= \frac{0.24}{0.276} \right]$	M1	Correct expression or FT <i>their</i> (b)
	$\frac{20}{23}$ or 0.87[0]	A1	
		2	

Question		Answer				Marks	Guidance
5(a)		1	1		[]	M1	At least 4 frequency densities calculated, accept
	Class width	10 10	20	20	40		unsimplified. May be read from graph using <i>their</i> scale, 3SF or correct
	Frequency Density	1.6 5.4	3.9	1.6	0.5	A1	All heights correct on graph
	Frequency density					B1	Bar ends at 0, 10, 20, etc. with a horizontal linear scale with at least 3 values indicated, $0 \leq \text{horizontal axis} \leq 100$
	6.0 5.0 4.0 3.0 2.0					B1	Axes labelled: Frequency density (fd), time (t) and seconds. Linear vertical scale, with at least 3 values indicated $0 \leq \text{vertical axis} \leq 5.4$
	1.0	40 60	80 100	Time/t seconds			
						4	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(b)	$Mean = \left[\frac{16 \times 5 + 54 \times 15 + 78 \times 30 + 32 \times 50 + 20 \times 80}{200}\right]$ $= \frac{80 + 810 + 2340 + 1600 + 1600}{200}$	M1	Uses at least 4 midpoint attempts (e.g. 5 ± 0.5). Accept unsimplified expression, denominator either correct or <i>their</i> Σ frequencies
	$\left[\frac{6430}{200}\right] 32\frac{3}{20} \text{ or } 32.15$	A1	Accept 32.2
		2	
5(c)	A value in correct UQ (40–60) – a value in correct LQ (10–20)	M1	
	Greatest possible value is $60 - 10 = 50$	A1	Condone 49. 9
		2	

Question	Answer	Marks	Guidance
6(a)	$1 - P(10, 11, 12) = 1 - ({}^{12}C_{10}0.6{}^{10}0.4^2 + {}^{12}C_{11}0.6{}^{11}0.4^1 + {}^{12}C_{12}0.6{}^{12}0.4^0)$	M1	One term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$, any p allowed.
	[= 1 - (0.003832 + 0.01/414 + 0.0021/08)]	A1	Correct unsimplified expression, or better.
	[1 - 0.083443] = 0.917		AWRT
	Alternative method for Question 6(a)		
	$P(0,1,2,3,4,5,6,7,8,9) = {}^{12}C_0 0.6^0 0.4^{12} + {}^{12}C_1 0.6^1 0.4^{11} + \dots {}^{12}C_9 0.6^9$		One term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$, any p allowed.
	$ \begin{bmatrix} -0.000016777 + 0.00030199 + 0.0024914 + 0.012457 + 0.042043 + \\ 0.10090 + 0.17658 + 0.22703 + 0.21284 + 0.14189 \end{bmatrix} $	A1	Correct unsimplified expression with at least the first two and last terms
	0.917	A1	WWW, AWRT
		3	

Question	Answer	Marks	Guidance
6(b)	[Mean =] 0.6×150 [= 90]; [Variance =] $0.6 \times 150 \times 0.4$ [= 36]	B1	Correct mean and variance. Accept evaluated or unsimplified
	$P(X < 81) = P\left(Z < \frac{80.5 - 90}{6}\right)$	M1	Substituting <i>their</i> mean and variance into \pm standardisation formula (with a numerical value for 80.5), allow σ^2 , $\sqrt{\sigma}$, but not $\mu \pm 0.5$
		M1	Using continuity correction 80.5 or 81.5
	$\Phi(-1.5833) = 1 - 0.9433$	M1	Appropriate area Φ , from final process, must be probability
	0.0567	A1	AWRT
		5	
6(c)	np = 90, nq = 60 both greater than 5	B1	At least <i>nq</i> evaluated and statement >5 required
		1	

Question	Answer	Marks	Guidance
7(a)	$P(X=3) = \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5}$	M1	$\frac{m}{7} \times \frac{n}{6} \times \frac{o}{5}$ used throughout. condone use of $\frac{1}{2}$
	$\frac{6}{35}$	A1	AG. The fractions must be identified, e.g. P(NC, NC, C), may be seen in a tree diagram.
		2	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(b)	x 1 2 3 4 5 p $\frac{15}{10}$ $\frac{10}{6}$ $\frac{3}{2}$ $\frac{1}{1}$	B1	Table with x values and at least one probability Condone any additional x values if probability stated as 0.
	T 35 35 35 35	B1	One correct probability other than $X = 3$ linked to the correct outcome
		B1	Two further correct probabilities other than $X = 3$ seen linked to the correct outcome
		B1FT	All probabilities correct, or at least 4 probabilities summing to 1
		4	
7(c)	$\begin{bmatrix} E(X) = 1 \times \frac{15}{35} + 2 \times \frac{10}{35} + 3 \times \frac{6}{35} + 4 \times \frac{3}{35} + 5 \times \frac{1}{35} \end{bmatrix}$ $E(X) = \frac{15 + 20 + 18 + 12 + 5}{35} \left[= \frac{70}{35} = 2 \right]$	M1	At least 4 correct terms FT <i>their</i> values in (a) with probabilities summing to 1 May be implied by use in Variance, accept unsimplified expression.
	$\operatorname{Var}(X) = \left[\frac{1^2 \times 15 + 2^2 \times 10 + 3^2 \times 6 + 4^2 \times 3 + 5^2 \times 1}{35} - 2^2\right]$ $\frac{15 + 40 + 54 + 48 + 25}{35} - 2^2$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$. FT <i>their</i> table accept probabilities not summing to 1.
	$\left[=\frac{182}{35}-4\right]=\frac{6}{5}$	A1	N.B. If method FT for M marks from <i>their</i> incorrect (b), expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities <1
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/52 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	nematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	6	B1	WWW
		1	
1(b)	$\left(\frac{5}{6}\right)^3 \frac{1}{6} + \left(\frac{5}{6}\right)^4 \frac{1}{6} + \left(\frac{5}{6}\right)^5 \frac{1}{6} + \left(\frac{5}{6}\right)^6 \frac{1}{6}$	M1	$p^{3}(1-p) + p^{4}(1-p) + p^{5}(1-p) + p^{6}(1-p), 0$
	0.300 (0.2996)	A1	At least 3s.f. Award at most accurate value.
	Alternative method for Question 1(b)		
	$\left(\frac{5}{6}\right)^3 - \left(\frac{5}{6}\right)^7$	M1	$p^3 - p^7, 0$
	0.300 (0.2996)	A1	At least 3s.f. Award at most accurate value.
		2	
1(c)	$1 - \left(\frac{5}{6}\right)^9$	M1	$1 - p^n, 0$
	0.806	A1	
	Alternative method for Question 1(c)		
	$\frac{1}{6} + \frac{1}{6} \left(\frac{5}{6}\right) + \frac{1}{6} \left(\frac{5}{6}\right)^2 + \dots + \frac{1}{6} \left(\frac{5}{6}\right)^8$	M1	$p + p(1-p) + p(1-p)^{2} + p(1-p)^{3} + p(1-p)^{4} + p(1-p)^{5} + p(1-p)^{6} + p(1-p)^{7} + p(1-p)^{8} (+ p(1-p)^{9}), 0As per answer for minimum terms shown$
	0.806	A1	
		2	

Question	Answer	Marks	Guidance
2	$\left[P(X>1.1) = \frac{72}{2000} (= 0.036)\right]$ z = ±1.798	B1	$1.79 \le z \le 1.80, -1.80 \le z \le -1.79$ seen
	$\frac{1.1 - 1.04}{\sigma} = 1.798 \\ \left[\frac{0.06}{\sigma} = 1.798\right]$	B1	1.1 and 1.04 substituted in ±standardisation formula, allow continuity correction, not σ^2 or $\sqrt{\sigma}$
		M1	Equate <i>their</i> ±standardisation formula to a <i>z</i> -value and to solve for the appropriate area leading to final answer (expect $\sigma < 0.5$). $\left(\operatorname{Accept} \pm \frac{0.06}{\sigma} = z - \operatorname{value}\right)$
	$\sigma = 0.0334$	A1	$0.03335 \le \sigma \le 0.0334$. At least 3 3s.f.
		4	

Question	Answer	Marks	Guidance
3(a)	$P(\text{not late}) = 0.4 \times 0.45 + 0.35 \times 0.3 + 0.25 \times (1 - x)$ or $P(\text{late}) = 0.4 \times 0.55 + 0.35 \times 0.7 + 0.25x$	M1	$0.4 \times p + 0.35 \times q + 0.25 \times r$, p = 0.45, 0.55, q = 0.3, 0.7 and $r = (1 - x), x$
	0.18 + 0.105 + 0.25 (1 - x) = 0.48 or 0.22 + 0.245 + 0.25x = 0.52	A1	Linear equation formed using sum of 3 probabilities and 0.48 or 0.52 as appropriate. Accept unsimplified.
	<i>x</i> = 0.22	A1	Final answer
		3	
3(b)	$\left[P(train late) - \frac{P(train \cap late)}{P(train \cap late)}\right]$	B1	0.35×0.7 or 0.245 seen as numerator of fraction
	$\begin{bmatrix} P(late) & P(late) \end{bmatrix}$ = $\frac{0.35 \times 0.7}{1 - 0.48}$ or $\frac{0.35 \times 0.7}{0.4 \times 0.55 + 0.35 \times 0.7 + 0.25 \times their 0.22}$	M1	P(late) seen as a denominator with <i>their</i> probability as numerator (Accept $\frac{their p}{0.52} or \frac{their p}{0.22 + 0.245 + 0.25 \times their 0.22}$)
	$= 0.471 \text{ or } \frac{49}{104}$	A1	
		3	

Question				Answer				Marks	Guidance
4(a)	X	-1	0	1	2	3		B1	Table with correct X values and at least one probability Condone any additional X values if probability stated as 0.
	<i>P(X)</i>	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{3}{9}$	$\frac{2}{9}$		B1	2 correct probabilities linked with correct outcomes, may not be in table.
								B1	3 further correct probabilities linked with correct outcomes, may not be in table.
									SC if less than 2 correct probabilities seen, award SCB1 for sum of <i>their</i> 4 or 5 probabilities in table = 1
								3	
4(b)	$\begin{bmatrix} E(X) = \frac{-1 \times 1 + (0 \times 2) + 1 \times 1 + 2 \times 3 + 3 \times 2}{9} = \\ \frac{-1 + 1 + 6 + 6}{9} \end{bmatrix}$						M1	May be implied by use in variance, accept unsimplified expression. FT <i>their</i> table if <i>their</i> 3 or more probabilities sum to 1 or 0.999	
	$\begin{bmatrix} \text{Var} (X) \\ -1^2 \times 1 \\ \\ 1 + 0 + 1 \end{bmatrix}$	$ \begin{array}{c}) =] \\ + \left(0^2 \times 2 \right) + \\ \\ \hline \\ + 12 + 18 \\ \hline 9 \\ \end{array} - $	$\frac{1^2 \times 1 + 2^2}{9}$ (their E(X)	$\frac{\langle 3+3^2\times 2}{\rangle}$	-(their E(X	$\left(T \right) \right)^2$		M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table even if <i>their</i> 3 or more probabilities not summing to 1.
	E(X) =	$=\frac{4}{3}$ or 1.33	and Var(X	$=\frac{16}{9}$ or 1.	78			A1	Answers for $E(X)$ and $Var(X)$ must be identified
								3	N.B. If method FT for M marks from <i>their</i> incorrect (b), expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities <1

Question	Answer	Marks	Guidance
5(a)	$[(0.7)^3 =]0.343$	B1	Evaluated WWW
	Alternative method for Question 5(a)		
	$[(0.15)^3 + {}^{3}C_1(0.15)^2(0.55) + {}^{3}C_2(0.15)(0.55)^2 + (0.55)^3 =] 0.343$	B1	Evaluated WWW
		1	
5(b)	$1 - (0.85^9 + {}^9C_1 \ 0.15^1 \ 0.85^8 + {}^9C_2 \ 0.15^2 \ 0.85^7)$	M1	One term: ${}^{9}C_{x} p^{x} (1-p)^{9-x}$ for $0 < x < 9$, any 0
	[1 - (0.231617 + 0.367862 + 0.239667)]	A1	Correct expression, accept unsimplified.
	0.141	A1	$0.1408 \leq ans \leq 0.141$, award at most accurate value.
	Alternative method for Question 5(b)		
	$ {}^{9}C_{3}0.15^{3}0.85^{6} + {}^{9}C_{4}0.15^{4}0.85^{5} + {}^{9}C_{5}0.15^{5}0.85^{4} + {}^{9}C_{6}0.15^{6}0.85^{3} + {}^$	M1	One term: ${}^{9}C_{x} p^{x} (1-p)^{9-x}$ for $0 < x < 9$, any 0
	$C_7 0.13 \ 0.83 \ \pm \ C_8 0.13 \ 0.83 \ \pm \ 0.13$	A1	Correct expression, accept unsimplified.
	0.141	A1	$0.1408 \leq ans \leq 0.141$, award at most accurate value.
		3	

May/June 2021

Question	Answer	Marks	Guidance
5(c)	Mean = $[60 \times 0.15 =]9$ Variance = $[60 \times 0.15 \times 0.85 =]7.65$	B1	Correct mean and variance, allow unsimplified. ($2.765 \le \sigma \le 2.77$ imply correct variance)
	$\left[\left(X \ge 12 \right) = \right] P \left(Z > \frac{11.5 - 9}{\sqrt{7.65}} \right)$	M1	Substituting <i>their</i> mean and variance into ±standardisation formula (any number for 11.5), not σ^2 or $\sqrt{\sigma}$
		M1	Using continuity correction 11.5 or 12.5 in <i>their</i> standardisation formula.
	$1 - \Phi(0.9039) = 1 - 0.8169$	M1	Appropriate area Φ , from final process, must be probability.
	0.183	A1	Final AWRT
		5	

Question	Answer	Marks	Guidance
6(a)	<u>8!</u> 2!3!	M1	$\frac{8!}{k \Join m!} k = 1 \text{ or } 2, m = 1 \text{ or } 3, \text{ not } k = m = 1$ no additional terms
	3360	A1	
		2	

May/June 2021

Question	Answer	Marks	Guidance
6(b)	Method 1 Arrangements Rs at ends – Arrangements Rs at ends and O	s together	
	[Os not together =] $\frac{6!}{3!} - 4!$	M1	$\frac{6!}{k!} - m, 1 \le k \le 3, m \text{ an integer, condone } 2 \times \left(\frac{6!}{k!}\right) - m.$
		M1	w - 4! or $w - 24$, w an integer Condone $w - 2 \times 4!$
	96	A1	
	Method 2 identified scenarios R R, Arrangement No Os together	r + 2Os and	l a single O
	${}^{4}C_{3} \times 3! + {}^{4}C_{2} \times 2 \times 3!$		${}^{4}C_{3} \times 3! + r \text{ or } 4 \times 3! + r \text{ or } {}^{4}P_{3} \times 3! + r, r \text{ an integer.}$ Condone $2 \times {}^{4}C_{3} \times 3! + r. 2 \times 4 \times 3! + r \text{ or } 2 \times {}^{4}P_{3} \times 3! + r.$
		M1	$q + {}^{4}C_{2} \times 3! \times k \text{ or } q + {}^{4}P_{2} \times 3! \times k, k = 1, 2, q \text{ an integer}$
	[24 + 72 =] 96	A1	
		3	
6(c)	Method 1 Identified scenarios		
	OORR ${}^{3}C_{2} \times {}^{2}C_{2} \times [{}^{3}C_{0}] = 3 \times 1 = 3$	B1	Outcomes for 2 identifiable scenarios correct, accept unsimplified.
	$ORK_{-} = C_{1} \times C_{2} \times C_{1} = 3 \times 1 \times 3 = 9$ $OOR_{-} = {}^{3}C_{2} \times {}^{2}C_{1} \times {}^{3}C_{1} = 3 \times 2 \times 3 = 18$ $OR_{-} = {}^{3}C_{1} \times {}^{2}C_{1} \times {}^{3}C_{2} = 3 \times 2 \times 3 = 18$ $OOOR = {}^{3}C_{3} \times {}^{2}C_{1} \times [{}^{3}C_{0}] = 1 \times 2 = 2$	M1	Add 4 or 5 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.
	Total 50	A1	All correct and added
	Probability = $\frac{50}{{}^{8}C_{4}}$	M1	$\frac{their'50'}{{}^{8}C_{4}}$, accept numerator unevaluated

Question	Answer	Marks	Guidance					
6(c) cont'd	$\frac{50}{70}$ or 0.714	A1						
	Method 2 Identified outcomes							
	ORTM ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORTW ${}^{3}C_{1} \times {}^{2}C_{1} = 6$	B1	Outcomes for 5 identifiable scenarios correct, accept unsimplified.					
	ORMW ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORRM ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ ORRW ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ ORRT ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ OROR ${}^{3}C_{2} \times {}^{2}C_{2} = 3$ OROT ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROM ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROW ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROO ${}^{3}C_{3} \times {}^{2}C_{1} = 2$	M1	Add 9, 10 or 11 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.					
	Total 50	A1	All correct and added					
	Probability = $\frac{50}{{}^{8}C_{4}}$	M1	$\frac{their'50'}{{}^{8}C_{4}}$, accept numerator unevaluated.					
	$\frac{50}{70}$ or 0.714	A1						
		5						

Question	Answer	Marks Guidance
7(a)	Includes all data	B1 Reference to <i>either</i> including all/raw data or further statistical processes are possible that cannot be found using data from box-and-whisker, eg frequency, mean, mode or standard deviation not only median, IQR, range or spread which can be found from both.
		1
7(b)	Amazons Giants	B1 Correct stem can be upside down, ignore extra values
	8 17 5	B1 Correct Amazons labelled on left, leaves in order from right to left and lined up vertically (less than halfway to next column), no commas or other punctuation.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 Correct Giants labelled on same diagram, leaves in order and lined up vertically (less than halfway to next column), no commas or other punctuation.
	5 21	B1 Correct single key for their diagram, need both teams identified and 'cm' stated at least once here or in leaf headings or title.
	Key: 1 18 2 means 181 cm for Amazons and 182 cm for Giants	SC for if 2 separate diagrams drawn, award SCB1 if both keys meet these criteria (Max B1, B0, B0, B1)
		4
7(c)	[UQ = 202 (cm), LQ = 182 (cm)] $[UQP = 1202 \dots 182 = 20 \text{ (cm)}]$	M1 $201 \le UQ \le 205 - 181 \le LQ \le 184$
	[1QK -] 202 - 162 - 20 (CIII)	A1 WWW
		2

Question	Answer	Marks	Guidance			
7(d)	$[\Sigma_{11} = 2132 \\ \Sigma_{15} = 191.2 \times 15 = 2868]$	B1	Both Σ_{11} and Σ_{15} found. Accept unevaluated.			
	$their \ 2868 = their \ 2132 + (180 + 185 + 190) + h$	M1	Forming an equation for the height using <i>their</i> Σ_{11} and Σ_{15} .			
	181 (cm)	A1				
	Alternative method for Question 7(d)					
	$[\Sigma_{15} = 191.2 \times 15 = 2868$ $\Sigma_{15} = 2687 + h]$	B1	Σ_{15} found using the mean and raw data methods. Accept unevaluated.			
	<i>their</i> $2868 = their 2687 + h$	M1	Forming an equation for the height using <i>their</i> Σ_{15} expressions.			
	181 (cm)	A1				
	Alternative method for Question 7(d)					
	$[\Sigma_{15} = 2687 + h]$ $\frac{\Sigma_{15}}{15} = 191.2]$	B1	Σ_{15} found using raw data method and statement on calculating new mean. Accept unevaluated.			
	$\frac{their 2687 + h}{15} = 191.2$	M1	Forming an equation for the height using <i>their</i> Σ_{15} expressions			
	181 (cm)	A1				
		3	N.B. All methods can be presented as a logical numerical argument which can be condoned if clear.			

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/53 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Matł	nematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method Α mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. .

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	60	B1	Accept 60 or 61. No decimals
		1	
1(b)	65% of 160 = 104	M1	0.65×160 (=104) seen unsimplified or implied by use on graph
	136 (cm)	A1	Use of graph must be seen. SCB1 correct value (136 only) if neither 104 nor use of graph are evident
		2	
1(c)	UQ: 150 LQ: 76	M1	$UQ - LQ ; 148 \leq UQ \leq 152; 74 \leq LQ \leq 78.$
	IQR = 150 - 70 = 74 [cm]	A1	Must be from 150 - 76
		2	

Question	Answer	Marks	Guidance
2	p + p + 0.1 + q + q = 1	B1	Sum of probabilities = 1
	0.1 + 2q = 3(2p)	B1	Use given information
	Attempt to solve two correct equations in p and q	M1	Either use of Substitution method to form a single equation in either <i>p</i> or <i>q</i> and finding values for both unknowns. Or use of Elimination method by writing both equations in same form (usually $ap + bq = c$) and + or – to find an equation in one unknown and finding values for both unknowns.
	$p = \frac{1}{8}$ or 0.125 and $q = \frac{13}{40}$ or 0.325	A1	CAO, both WWW
		4	

Question	Answer	Marks	Guidance
3(a)	Mean height $=\frac{\Sigma x + \Sigma y}{6+11} = \frac{1050 + 1991}{6+11} = \frac{3041}{17}$	M1	Use of appropriate formula with values substituted, accept unsimplified.
	178.9	A1	Allow 178.88, 178 $\frac{15}{17}$, 179
		2	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(b)	$\frac{\Sigma x^2 + \Sigma y^2}{6+11} = \frac{193700 + 366400}{6+11}$	M1	Use of appropriate formula with values substituted, accept unsimplified.
	$Sd^{2} = \frac{560100}{17} - their 178.88^{2} [= 948.289]$	M1	Appropriate variance formula using <i>their</i> mean ² , accept unsimplified expression.
	Standard deviation = 30.8	A1	Accept 30.7
		3	

Question	Answer	Marks	Guidance
4(a)	[Possible cases: 1 1 2, 1 2 1, 2 1 1] Probability = $\left(\frac{1}{6}\right)^3 \times 3$	M1	$\left(\frac{1}{6}\right)^3 \times k$, where <i>k</i> is an integer.
		M1	Multiply a probability by 3, not +, – or \div
	$\frac{1}{72}$	A1	Accept $\frac{3}{216}$ or 0.0138 or 0.0139
		3	
4(b)	$P(18) = \left(\frac{1}{6}\right)^3 \left[= \frac{1}{216} \right]$	B1	
	P(18 on 5th throw) = $\left(\frac{215}{216}\right)^4 \times \frac{1}{216}$	M1	$(1-p)^4 p, 0 < their p < 1$
	0.00454	A1	
		3	

9709/53

Question	Answer	Marks	Guidance
5(a)	$z_1 = \frac{4-\mu}{\sigma} = -1.378$	B1	$1.378 \leqslant z_1 \le 1.379 \text{ or } -1.379 \leqslant z_1 \leqslant -1.378$
	$z_2 = \frac{10 - \mu}{\sigma} = 0.842$	B1	$0.841 \leqslant z_2 \leqslant 0.842 \text{ or } -0.842 \leqslant z_2 \leqslant -0.841$
	Solve to find at least one unknown: $\frac{4-\mu}{\sigma} = -1.378$ $\frac{10-\mu}{\sigma} = 0.842$	M1	Use of ±standardisation formula once with μ , σ , a <i>z</i> -value and 4 or 10, allow continuity correction, not σ^2 or $\sqrt{\sigma}$
		M1	Use either the elimination method or the substitution method to solve two equations in μ and σ .
	$\sigma = 2.70 \ \mu = 7.72$	A1	$2.70 \leqslant \sigma \leqslant 2.71 \ 7.72 \leqslant \mu \leqslant 7.73$
		5	
5(b)	$\Phi(2) - \Phi(-2) = 2\Phi(2) - 1$	M1	Identifying 2 and -2 as the appropriate <i>z</i> -values
	2× <i>their</i> 0.9772–1	B1	Calculating the appropriate area from stated phis of z-values which must be \pm the same number
	0.9544 or 0.9545	A1	Accept AWRT 0.954
	0.9544 × 800 = 763.52 763 or 764	B1 FT	FT <i>their</i> 4SF (or better) probability, final answer must be positive integer
		4	

Question	Answer	Marks	Guidance	
6(a)	$\frac{11!}{2!3!}$	M1	11! alone on numerator – must be a fraction. $k! \times m!$ on denominator, $k = 1, 2, m = 1, 3, 1$ can be implied but cannot both = 1. No additional terms	
	3326400	A1	Exact value only	
		2		
6(b)	8! = 40320	B1	Evaluate, exact value only	
		1		
6(c)	$\frac{9!}{3!} \times 7$	M1	$\frac{9!}{3!} \times k$ seen, k an integer > 0, no +, - or ÷	
		M1	7 × an integer seen in final answer, no +, – or \div	
	423360	A1	Exact value only	
	Alternative method for Question 6(c)			
	${}^{9}C_{3} \times 7! (\times \frac{3!}{3!})$	M1	$9C3 \times k$ seen, k an integer > 0, no + or –	
		M1	$7! \times k$ seen, , k an integer > 0, no + or –	
	423360	A1	Exact value only but there must be evidence of $\times \frac{3!}{3!}$	
May/June 2021

Question	Answer	Marks	Guidance						
6(c)	Alternative method for Question 6(c)								
	$3 \times 7 \times \frac{8!}{2!}$	M1	$3 \times \frac{8!}{2!} \times k$ seen, k an integer > 0, no + or –						
		M1	7 × an integer seen in final answer, no +, – or \div						
	423360	A1	Exact value only						
	Alternative method for Question 6(c)								
	$7 \times \frac{2}{11} \times \frac{9}{10} \times \frac{8}{9} \times \frac{7}{8} \times \frac{1}{7} \times \text{total no. of arrangements}$	M1	Product of correct five fractions $\times k$ seen, k an integer > 0 , no $+$ or $-$						
		M1	7×'total no of arrangements' ×k seen, k an integer > 0, no + or –						
	423360	A1	Exact value only						
	Alternative method for Question 6(c)								
	No E between the Rs $-\frac{{}^{6}C_{3} \times 3! \times 7!}{3!} = 100800$	M1	Finding the correct number of ways for no, 1 or 2 Es between the Rs, accept unsimplified.						
	1E between the Rs $-\frac{{}^{6}C_{2} \times 3! \times 7!}{2!} = 226800$	M1	Adding the number of ways for 3 or 4 correct scenarios						
	2Es between the Rs $-{}^{6}C_{1} \times 3! \times 7! = 90720$ 3Es between the Rs $-7! = 5040$								
	$\left[\text{Total} = 7 \text{l} \times (20 + 45 + 18 + 1) = 7 \text{l} \times 84 = \right] 423360$	A1	CAO						
		3							

Question	Answer	Marks	Guidance					
6(d)	$\begin{array}{c} \mathbf{E} \mathbf{E} \mathbf{R} \\ \mathbf{E} \mathbf{E} \mathbf{R} \\ \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{R} \end{array} \xrightarrow{6} C_2 = 15 \\ \frac{6}{2} C_2 = 6 \end{array}$	M1	Identifying four correct scenarios only.					
	$E E R R - C_1 = 6$ $E E E R - 6C_1 = 6$ $E E E R R - 6C_0 = 1$	B1	Correct number of selections unsimplified for 2 or more scenario.					
		M1	Adding the number of selections for 3 or 4 identified correct scenarios only, accept unsimplified. ${}^{3}C_{x} \times {}^{2}C_{y} \times {}^{6}C_{z}, x+y+z=5$ correctly identifies <i>x</i> Es and <i>y</i> Rs					
	[Total =] 28	A1	WWW, only dependent upon 2nd M mark.					
	Alternative method for Question 6(d) – Fixing EER first. No other scenarios can be present anywhere in solution.							
	$E E R \wedge = {}^{8}C_{2}$	M1	⁸ C _x seen alone or ⁸ C _x × k, , $k = 1$ or 2, 0 <x<8 Condone ⁸P_x or ⁸P_x × k, $k = 1$ or 2, 0<x<8< td=""></x<8<></x<8 					
		B1	${}^{8}C_{2} \times k, \ k = 1 \text{ or } 2 \text{ OE}$					
		M1	${}^{8}C_{2} \times k, k = 1$ OE and no other terms					
	[Total =] 28	A1	Value stated					
		4						

Question	Answer	Marks	Guidance
7(a)(i)	$\frac{40}{800}$ or $\frac{1}{20}$ or 0.05	B1	
		1	
7(a)(ii)	$\frac{177}{223+177+40}$	M1	<i>Their</i> $223 + 177 + 40$ seen as denominator of fraction in the final answer, accept unsimplified
	$\frac{177}{440}$ or 0.402	A1	CAO
	Alternative method for Question 7(a)(ii)		
	$P(G \mid S) = \frac{P(G \cap S)}{P(S)} = \frac{\frac{177}{800}}{\frac{223 + 177 + 40}{800}} = \frac{\frac{177}{800}}{\frac{440}{800}} = \frac{\frac{177}{800}}{\frac{11}{20} \text{ or } 0.55}$	M1	<i>Their</i> $P(S)$ seen as denominator of fraction in the final answer, accept unsimplified
	$\frac{177}{440}$ or 0.402	A1	CAO
		2	
7(b)(i)	$P(0, 1, 2) = {}_{^{10}C_0} (0.35)^0 (0.65)^{10} + {}^{10}C_1 (0.35)^1 (0.65)^9 + {}^{10}C_2 (0.35)^2 (0.65)^8$	M1	One term: ¹⁰ C _x $p^x(1-p)^{10-x}$ for $0 < x < 10$, any 0
	0.013463 + 0.072492 + 0.17565	A1	Correct unsimplified expression, or better
	0.262	A1	
		3	

Question	Answer	Marks	Guidance
7(b)(ii)	Mean = $120 \times 0.35 [= 42]$ Variance = $120 \times 0.35 \times 0.65 [= 27.3]$	B1	Correct mean and variance seen, allow unsimplified
	$P(X>32) = P(Z > \frac{32.5 - 42}{\sqrt{27.3}}) = P(Z > -1.818)$	M1	Substituting <i>their</i> mean and variance into \pm standardisation formula (any number), condone σ^2 or $\sqrt{\sigma}$
		M1	Using continuity correction 31.5 or 32.5
	Φ(1.818) 0.966		Appropriate area Φ , from final process, must be probability
			$0.965 \leqslant p \leqslant 0.966$
		5	

Cambridge International A Level

MATHEMATICS

9709/51 October/November 2020

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

г

Ma	thematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International A Level – Mark Scheme PUBLISHED Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column.
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer								Marks Gui	dance
1(a)					R	ed			M1 Complete outcome space or or listing A and B outcomes	
			1	2	3	4	5	6	or listing $A \cap B$ outcomes	or listing $A \cap B$ outcomes
		1	2	3	4	5	6	7		
	2	2	3	4	5	6	7	8		
	ue	3	4	5	6	7	8	9		
	Bl	4	5	6	7	8	9	10		
		5	6	7	8	9	10	11		
		6	7	8	9	10	11	12		
	P(A∩	$(\mathbf{B}) = -$	5						A1 With evidence	
	$P(A \mid B) = $			$(A B) = \frac{1}{36}$						
									2	

Question	Answer	Marks	Guidance
1(b)	$P(A) \times P(B) = \frac{1}{3} \times \frac{10}{36}$	M1	Their $\frac{1}{3} \times their \frac{10}{36}$ seen
	$\frac{5}{54} \neq \frac{5}{36}$ so not independent	A1	$\frac{5}{54}, \frac{5}{36}, P(A) \times P(B)$ and $P(A \cap B)$ seen in workings and correct conclusion stated Condone $\frac{5}{36}$ being stated in (a)
	Alternative method for question 1(b)		
	$P(B A) = P(B)$ $P(B A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{5}{36}}{\frac{1}{3}}$	M1	OE, $\frac{their1(a)}{theirP(A)}$ seen
	$\frac{5}{12} \neq \frac{5}{18}$ so not independent	A1	P(A B), P(B), $\frac{5}{12}, \frac{5}{18}$ seen in workings and correct conclusion stated Condone $\frac{5}{18} \equiv \frac{10}{36}$ being identified in (a)
		2	

Question	Answer	Marks	Guidance
2(a)	$0.6 \times 0.7 + 0.4(1 - x) = 0.58$ = 0.42 + 0.4(1 - x) = 0.58	M1	Equation of form $0.6 \times a + 0.4 \times b = 0.58$; a = 0.3, 0.7, b = x, (1 - x)
		B 1	Single correct product seen, condone 0.42 , in an equation of appropriate form
	x = 0.6	A1	
	Alternative method for question 2(a)		
	$0.6 \times 0.3 + 0.4x = 0.42 = 0.18 + 0.4x = 0.42$	M1	Equation of form 0.6 x $a + 0.4$ x b = 0.42; a = 0.3, 0.7, b = x, (1 - x)
		B 1	Single correct product seen, condone 0.18 , in an equation of appropriate form
	x = 0.6	A1	
		3	
2(b)	$(0.6 \times 0.3)^2$	M1	$(a \times b)^2$, $a = 0.6$, 0.4 and $b = 0.7$, 0.3, x , (1– x) or 0.18 ² , alone.
	0.0324	A1	
		2	
3(a)	$P(X > 6) = 0.75^6$	M1	$p^{n}, n = 6, 7 0$
	$0.178, \frac{729}{4096}$	A1	0.17797
		2	

Question						Marks		Guidance					
3(b)	1 - P(0, 1)	(2) = 1 - ($0.75^{10} + {}^{10}$	$0.75^9 + {}^{10}$	$C_2 0.25^2 0.75^8$)	M1	Binon any <i>p</i> ,	Binomial term of form ${}^{10}C_x p^x (1-p)^{10-x}, 0 any p, x \neq 0, 10$					
	1 - (0.056	53135 + 0.1	877117 +	0.2815676	5)		A1	Corre	ct unsi	mplifie	ed expi	ression	1
	0.474						A1	0.474	$\leq p \leq$	0.474	4		
							3						
4(a)	У	1	2	3	4]	B 1		1	2	3	4	
	prob	_7	5	3	1	-		1	1	1	2	3]
	proc	16	16	16	16			2	1	2	1	2	
								3	2	1	3	1	
								4	3	2	1	4	
								Proba one pr stated	bility c obabil	listribu ity, all	tion ta	ible wi tra scor	th correct scores with at least re values if probability of zero
							B1	One p	robabi	lity (liı	nked w	vith con	rrect score) correct
							B1	2 mor	e prob	s (linke	ed with	n corre	ct scores) correct
							B1 FT	4 th pro	b corr	ect, FT	sum c	of 3 or	4 terms = 1
							4						

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(b)	$P(2 even) = \frac{\frac{5}{16}}{\frac{6}{16}}$	M1	$\frac{\text{their P(2)}}{\text{their P(2) + their P(4)}}$ seen or correct outcome space.
	$\frac{5}{6}$ or 0.833	A1	
		2	
5(a)	$P(X > 4.2) = P(z > \frac{4.2 - 3.5}{0.9})$ = P(z > 0.7778)	M1	Using \pm standardisation formula, no $\sqrt{\sigma}$ or σ^2 , continuity correction
	1 - 0.7818	M1	Appropriate area Φ , from standardisation formula P(z >) in final solution
	0.218	A1	
		3	
5(b)	z = -1.282	B1	±1.282 seen (critical value)
	$\frac{t-3.5}{0.9} = -1.282$	M1	An equation using ±standardisation formula with a <i>z</i> -value, condone $\sqrt{\sigma}$, σ^2 and continuity correction
	t = 2.35	A1	AWRT, only dependent on M mark
		3	

Question	Answer	Marks	Guidance				
5(c)	$P(2.8 < X < 4.2) = 1 - 2 \times their 5(a)$ = 2(1 - their 5(a)) - 1 = 2(0.5 - their 5(a)) = 0.5636	B1 FT	FT from <i>their</i> 5(a) < 0.5 or correct Accept unevaluated probability OE Accept 0.564				
	Number of days = $365 \times 0.5636 = 205.7$	M1	$365 \times their p$				
	So, 205 (days)	A1 FT	Accept 205 or 206, not 205.0 or 206.0 no approximation/ rounding stated FT must be an integer value				
	Alternative method for question 5(c)						
	$P\left(\frac{2.8-3.5}{0.9} < z < \frac{4.2-3.5}{0.9}\right)$ = $\Phi(0.7778) - (1 - \Phi 0.7778)$ = $0.7818 - (1 - 0.7818)$ = 0.5636	B1	$0.5635OE$				
	Number of days = $365 \times 0.5636 = 205.7$	M1	$365 \times their p$				
	So, 205 (days)	A1 FT	Accept 205 or 206, not 205.0 or 206.0 no approximation/ rounding stated FT must be an integer value				
		3					

Question	Answer	Marks	Guidance
6(a)	The Takes (minutes)	M1	At least 4 points plotted at upper end points, with both scales linear with at least 3 values indicated
	Correct cumulative frequency curve	A1	All plotted correctly with curve drawn joined to $(0, 0)$, axes labelled cumulative frequency, time, minutes
		2	
6(b)	$150 \times 0.76 = 114$	M1	114 SOI, may be on graph
	k = 45 (mins)	A1 FT	Clear indication that <i>their</i> graph has been used, tolerance ± 1 mm
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(c)	Frequencies: 12 36 58 28 16	B1	Correct frequencies seen
	Mean = $\frac{10 \times 12 + 25 \times 36 + 35 \times 58 + 50 \times 28 + 80 \times 16}{150}$	B1	At least 4 correct midpoints seen and used
	$\frac{120 + 900 + 2030 + 1400 + 1280}{150}$	M1	Correct formula with <i>their</i> midpoints (not upper boundary, lower boundary, class width or frequency density).
	$38.2, 38\frac{1}{5}$	A1	
	Variance = $\frac{12 \times 10^2 + 36 \times 25^2 + 58 \times 35^2 + 28 \times 50^2 + 16 \times 80^2}{150} - mean^2$ $= \frac{1200 + 22500 + 71050 + 70000 + 102400}{150} - mean^2$	M1	Substitute <i>their</i> midpoints and frequencies (condone use of cumulative frequency) in correct variance formula, must have '– <i>their</i> mean ² '
	(Standard deviation = $\sqrt{321.76}$) = 17.9	A1	
		6	
7(a)	$\frac{8!}{2!}$	M1	$\frac{8!}{k} \equiv \frac{7 \ltimes 8}{k} \text{, where } k \in \mathbb{N}, \ \frac{a!}{2(!)}, \text{ where } a \in \mathbb{N}$
	20160	A1	
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(b)	Total number of ways: $\frac{10!}{2!3!}$ (= 302400) (A)	B1	Accept unsimplified
	With Ps together: $\frac{9!}{3!}$ (= 60 480) (B)	B1	Accept unsimplified
	With Ps not together: 302 400 – 60 480	M1	$\frac{10!}{m} - \frac{9!}{n}$, <i>m</i> , <i>n</i> integers or (A) – (B) if clearly identified
	241 920	A1	
	Alternative method for question 7(b)		
	<u>8!</u>	B1	$k \times 8!$ in numerator, k a positive integer, no \pm
	3!	B1	$m \times 3!$ in denominator, m a positive integer, no \pm
	$\times \frac{9 \times 8}{2}$	M1	<i>Their</i> $\frac{8!}{3!}$ multiplied by ${}^{9}C_{2}$ or ${}^{9}P_{2}$ no additional terms
	241 920	A1	Exact value, WWW
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(c)	Probability = $\frac{\text{Number of ways Es at beginning and end}}{\text{Total number of ways}}$ Probability = $\frac{\frac{8!}{2!}}{\frac{10!}{2 \times 3!}} = \frac{20160}{302400}$	M1	$\frac{\left(\frac{8!}{k!}\right)}{\frac{10!}{k!l!}} 1 \le k, l \in \mathbb{N} \le 3, \text{FT denominator from 7(b) or correct}$
	$\frac{1}{15}, 0.0667$	A1	
	Alternative method for question 7(c)		
	Probability = $\frac{3}{10} \times \frac{2}{9}$	M1	$\frac{a}{10} \times \frac{a-1}{9} a = 3,2$
	$\frac{1}{15}, 0.0667$	A1	
	Alternative method for question 7(c)		
	Probability = $\frac{1}{10} \times \frac{1}{9} \times 3!$	M1	$\frac{1}{10} \times \frac{1}{9} \times m!, m = 3, 2$
	$\frac{1}{15}, 0.0667$	A1	
		2	

Question	Answer	Marks	Guidance
7(d)	Scenarios: $P = F = \sum_{i=1}^{5} C_{i} = 1$	M1	${}^{5}C_{x}$ seen alone, $1 \leq x \leq 4$
	$\begin{array}{l} P \ E \ E \ E \ C_0 = 1 \\ P \ E \ E \ 5C_1 = 5 \\ P \ E \ - \ 5C_2 = 10 \\ P \ - \ - \ 5C_3 = 10 \end{array}$	M1	Summing the number of ways for 3 or 4 correct scenarios (ca be unsimplified), no incorrect scenarios
	Total = 26	A1	
		3	

Cambridge International A Level

MATHEMATICS

9709/52 October/November 2020

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ма	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT ٠ above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 • decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column. ٠
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. ٠
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. ٠

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

9709/52

Question	Answer	Marks	Guidance
1(a)	$1 - \left(\frac{5}{6}\right)^{5}$ or $\frac{1}{6} + \frac{5}{6} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{2} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{3} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{4} \times \frac{1}{6}$	M1	$1 - p^{n} n = 5,6$ or $p + pq + pq^{2} + pq^{3} + pq^{4} (+ pq^{5})$ 0
	$0.598, \frac{4651}{7776}$	A1	
		2	
1(b)	$(1 - P(0, 1, 2))$ $1 - \left(\left(\frac{5}{6}\right)^{10} + {}^{10}C_1\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^9 + {}^{10}C_2\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^8\right)$	M1	$^{10}C_x p^x (1-p)^{10-x}, 0$
	1 - (0.1615056 + 0.3230111 + 0.290710)	A1	Correct expression, accept unsimplified, condone omission of final bracket
	0.225	A1	$0.2247 , WWW$
		3	

Question	Answer	Marks	Guidance
2(a)	$P(1 \text{ red}) = \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times 3$	M1	$\frac{a}{8} \times \frac{b}{7} \times \frac{c}{6} \times k \text{ or } \frac{5}{d} \times \frac{3}{e} \times \frac{2}{f} \times 3, 1 \leq a, b, c \leq 5, d, e, f \leq 8, a, b, c,$
			<i>d</i> , <i>e</i> , <i>f</i> , <i>k</i> all integers $1 < k \leq 3$,
	$\frac{15}{56}$	A1	AG, WWW
	Alternative method for question 2(a)		
	$\frac{{}^{5}C_{1} \times {}^{3}C_{2}}{{}^{8}C_{3}}$	M1	$\frac{{}^{a}\mathrm{C}_{1} \times {}^{b}\mathrm{C}_{2}}{{}^{8}\mathrm{C}_{3}} \text{ or } \frac{{}^{5}\mathrm{C}_{d} \times {}^{3}\mathrm{C}_{e}}{{}^{8}\mathrm{C}_{3}} \text{ or }$
			$\frac{{}^{5}C_{d} \times {}^{3}C_{e} \left(or {}^{a}C_{1} \times {}^{b}C_{2}\right)}{{}^{5}C_{3} \times {}^{3}C_{0} + {}^{5}C_{2} \times {}^{3}C_{1} + {}^{5}C_{1} \times {}^{3}C_{2} + {}^{5}C_{0} \times {}^{3}C_{3}},$ a + b = 8, d + e = 3
	$\frac{15}{56}$	A1	AG, WWW, $\frac{15}{56}$ must be seen
		2	
2(b)	x 0 1 2 3	B1	Probability distribution table with correct outcomes with at least one probability less than 1, allow extra outcome values if
	Prob. 1 15 $30 = 15$ $10 = 5$		probability of zero stated.
	56 56 56 28 56 28	B1	2 of P(0), P(2) and P(3) correct
	0.0179 0.268 0.536 0.179	B1 FT	4^{th} probability correct or FT sum of 3 or more probabilities = 1, with P(1) correct
		3	

Question	Answer	Marks	Guidance
2(c)	$Var(X) = \frac{(0^2 \times 1) + 1^2 \times 15 + 2^2 \times 30 + 3^2 \times 10}{56} - \left(\frac{15}{8}\right)^2$ $= \frac{15}{56} + \frac{120}{56} + \frac{90}{56} - \left(\frac{15}{8}\right)^2$	M1	Substitute <i>their</i> attempts at scores in correct variance formula, must have ' – mean ² ' (FT if mean calculated) (condone probabilities not summing to 1 for this mark)
	$\frac{225}{448}, 0.502$	A1	
		2	

Question	Answer	Marks	Guidance
3(a)	$P(X > 11.3) = P(z > \frac{11.3 - 10.1}{1.3}) = P(z > 0.9231)$	M1	Using \pm standardisation formula, no $\sqrt{\sigma}$ or σ^2 , continuity correction
	1 - 0.822	M1	Appropriate area Φ , from standardisation formula P(z >) in final solution
	0.178	A1	0.1779
		3	
3(b)	z = -0.674	B1	±0.674 seen (critical value)
	$\frac{t - 10.1}{1.3} = -0.674$	M1	An equation using ±standardisation formula with a <i>z</i> -value, condone $\sqrt{\sigma}$ or σ^2 , continuity correction.
	t = 9.22	A1	AWRT. Only dependent on M1
		3	

Question	Answer	Marks	Guidance
3(c)	$P(8.9 < X < 11.3) = 1 - 2 \times their \mathbf{3(a)}$ = 2(1 - their 3(a)) - 1 = 2(0.5 - their 3(a)) = 0.644	B1 FT	FT from <i>their</i> 3(a) < 0.5 or correct, accept unevaluated probability OE
	Number of days = 90×0.644 = 57.96	M1	$90 \times their p$ seen, 0
	So 57 (days)	A1 FT	Accept 57 or 58, not 57.0 or 58.0, no approximation/rounding stated FT must be an integer value
	Alternative method for question 3(c)		
	$P\left(\frac{8 \cdot 9 - 10 \cdot 1}{1 \cdot 3} < z < \frac{11.3 - 10.1}{1 \cdot 3}\right)$ = $\Phi(0 \cdot 9231) - (1 - \Phi(0 \cdot 9231))$ oe = $0.822 - (1 - 0.822)$ = 0.644	B1	Accept unevaluated probability
	Number of days = 90×0.644 = 57.96	M1	$90 \times their p$ seen, 0
	So 57 (days)	A1 FT	Accept 57 or 58, not 57.0 or 58.0, no approximation/rounding stated FT must be an integer value
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(a)	$\begin{array}{c c} 1 \mathbf{April} & 2 \mathbf{April} \\ \hline 0.8 & \mathbf{Fine} \\ 0.25 & \mathbf{Rainy} \\ \hline 0.2 & \mathbf{Rainy} \\ \hline 0.4 & \mathbf{Fine} \\ \hline 0.6 & \mathbf{Rainy} \end{array}$	B1	All probabilities correct, may be on branch or next to 'Fine/Rainy' Ignore additional branches.
		1	
4(b)	$0.8 \times 0.75 + 0.2 \times 0.4$ (= $0.6 + 0.08$)	M1	Correct or FT from <i>their</i> diagram unsimplified, all probabilities $0 .Partial evaluation only sufficient when correct.Accept working in 4(b) or by the tree diagram.$
	$0.68, \frac{17}{25}$	A1	From supporting working
		2	

Question	Answer	Marks	Guidance
4(c)	$0.8 \times 0.75 \times 0.25 + 0.8 \times 0.25 \times 0.6$	M1	$a \times b \times c + a \times 1 - b \times d$, $0 < c$, $d \le 1$, <i>a</i> , <i>b</i> consistent with <i>their</i> tree diagram or correct, no additional terms
	0.15 + 0.12	A1	At least one term correct, accept unsimplified
	0.27	A1	Final answer
		3	
4(d)	$P(Y) = their (c) + 0.2 \times 0.4 \times 0.25 + 0.2 \times 0.6 \times 0.6 $ (= 0.362)	B1 FT	<i>their</i> (c) + $e \times f \times g + e \times (1-f) \times h$, $0 < g$, $h \le 1$, e , f consistent with <i>their</i> tree diagram, or correct
	$P(X Y) = \frac{their(c)}{their P(Y)} = \frac{0.27}{0.362}$	M1	<i>their</i> 4(c) (or correct)/ <i>their</i> previously calculated and identified $P(Y)$ or a denominator involving 3 or 4 3-factor probability terms consistent with <i>their</i> tree diagram & third factor 0
	$0.746, \frac{373}{500} \text{ or } \frac{135}{181}$	A1	(0.7458)
		3	

Question	Answer		Marks	Guidance
5(a)	Dados	Linva	B1	Correct stem can be upside down, ignore extra values
	8 6 6 5 2 0 0	0 0 2 9 1 0 1 2 5 6	B1	Correct Dados labelled, leaves in order and lined up vertically (less than midway to next column), no commas etc, no extra terms
	8 2 6	2 3 2 6	B1	Correct Linva on opposite side of stem labelled, leaves in order and lined up vertically (less than midway to next column), no commas etc, no extra terms
	2	4 0	B 1	Correct single key for their diagram, need both resorts identified and 'cm' stated at least once here or in leaf headings or title.
	KEY 6 3 2 means 36 and 32	cm (snow) in Dados cm (snow) in Linva		SC If 2 separate diagrams drawn, SCB1 if both keys meet these criteria B0B1B0SCB1 max.
			4	
5(b)	Median or $Q2 = 15$ (cm)		B1	Correct
	UQ or Q3 = 28 cm, LQ IQR = $28 - 10$	or $Q1 = 10 \text{ cm}$	M1	$22 \leq UQ \leq 36 - 8 \leq LQ \leq 10$
	18 (cm)		A1	WWW
			3	
5(c)	On average the snowfa	ll in Davos is higher	B1 FT	FT from <i>their</i> 5(b) values for Dados. Statement comparing central tendency in context
	The amount of snowfal	ll in Linva varies more than in Davos	B1 FT	Statement comparing spread in context Note: simply stating and comparing the values is not sufficient.
			2	

Question	Answer	Marks	Guidance		
6(a)	${}^{9}C_{6} (\times {}^{3}C_{3})$	M1	${}^{9}C_{k} \times n, k = 6, 3, n = 1,2$ oe Condone ${}^{9}C_{6} + {}^{3}C_{3}, {}^{9}P_{6} \times {}^{3}P_{3}$		
	84	A1	Accept unevaluated.		
		2			
6(b)	Number with 3 Baker children = ${}^{6}C_{2}$ or 15		Correct seen anywhere, not multiplied or added		
	Total no of selections = ${}^{9}C_{5}$ or 126 Probability = $\frac{\text{number of selections with 3 Baker children}}{\text{total number of selections}}$		Seen as denominator of fraction		
	$\frac{15}{126}, 0.119$	A1	OE, e.g. $\frac{5}{42}$		
	Alternative method for question 6(b)				
	$\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \left(\times \frac{6}{6} \right) \left(\times \frac{5}{5} \right) \times {}^5C_3$		${}^{5}C_{3}$ (OE) or 10 seen anywhere, multiplied by fractions only, not added		
		M1	$\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \left(\times \frac{6}{6} \right) \left(\times \frac{5}{5} \right) \times k , 1 \le k, k \text{ integer}$		
	$\frac{15}{126}, 0.119$	A1	OE, e.g. $\frac{5}{42}$		
		3			

Question	Answer	Marks	Guidance		
6(c)	[Total no of arrangements = 9!] [Arrangements with men together = 8! × 2]		9! - k or $362880 - k$, k an integer < 362880		
	Not together: 9! –				
	8!×2	B1	$8! \times 2(!)$ or 80 640 seen anywhere		
	282 240	A1	Exact value		
	Alternative method for question 6(c)				
	$7! \times 8 \times 7$	B1	$7! \times k$, <i>k</i> positive integer > 1		
		M1	$m \times 8 \times 7$, $m \times {}^{8}P_{2}$, $m \times {}^{8}C_{2} m$ positive integer > 1		
	282 240	A1	Exact value		
		3			
6(d)	$7! \times 2 \times 7$	M1	7! × k, k positive integer > 1 If 7! not seen, condone $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times (1) \times k$ or $7 \times 6! \times k$ only		
		M1	$m \times 2 \times 7$, <i>m</i> positive integer > 1		
	70 560	A1			
		3			

Cambridge International A Level

MATHEMATICS

9709/53 October/November 2020

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.
Ма	Iathematics Specific Marking Principles					
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.					
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.					
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.					
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).					
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.					
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.					

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT ٠ above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 • decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column. ٠
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. ٠
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. ٠

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$P(56 < X < 66) = P\left(\frac{56 - 62}{5} < z < \frac{66 - 62}{5}\right)$ = P(-1.2 < z < 0.8)	M1	Using \pm standardisation formula at least once, no $\sqrt{\sigma}$ or σ^2 , allow continuity correction
	$\Phi(0.8) + \Phi(1.2) - 1$ = 0.7881 + 0.8849 - 1	M1	Appropriate area Φ , from standardisation formula in final solution
	0.673	A1	
		3	
1(b)	<i>z</i> = 1.127	B1	$\pm(1.126 - 1.127)$ seen, 4 sf or more
	$\frac{60t - 62}{5} = 1.127$ 60t = 5.635 + 62 = 67.635	M1	z-value = $\pm \frac{(60t-62)}{5}$ condone z-value = $\pm \frac{(t-62)}{5}$ no continuity correction, condone $\sqrt{\sigma}$ or σ^2
	<i>t</i> = 1.13	A1	САО
		3	

9709/53

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
2(a)	$\left(\frac{5}{6}\right)^8$	M1	p^8 , $0 , no x, + or -$
	0.233	A1	
		2	
2(b)	36	B1	
		1	
2(c)	$P(X=10) + P(X=11) = \left(\frac{35}{36}\right)^9 \frac{1}{36} + \left(\frac{35}{36}\right)^{10} \frac{1}{36}$	M1	OE, unsimplified expression in form $p^9q + p^{10}q$, $p + q = 1$, no \times
	0.0425	A1	
		2	

Question	Answer	Marks	Guidance		
3(a)	Scenarios: $6W 0M {}^{9}C_{6} = 84$	M1	Correct number of ways for either 5 or 4 women, accept unsimplified		
	$4W 2M {}^{9}C_{4} \times {}^{5}C_{2} = 126 \times 10 = 1260$	M1	Summing the number of ways for 2 or 3 correct scenarios (can be unsimplified), no incorrect scenarios.		
	Total = 1974	A1			
		3			
3(b)	Total number of ways = ${}^{14}C_6$ (3003) Number with sister and brother = ${}^{12}C_4$ (495) Number required = ${}^{14}C_6$ -	M1	$^{14}C_6$ – a value		
	${}^{12}C_4 = 3003 - 495$	M1	${}^{12}C_x$ or ${}^{n}C_4$ seen on its own or subtracted from <i>their</i> total, $x \le 6$, $n \le 13$		
	2508	A1			
	Alternative method for question 3(b)				
	Number of ways with neither = ${}^{12}C_6 = 924$	M1	$^{12}C_6 + a \text{ value}$		
	Number of ways with either brother or sister (not both) = ${}^{12}C_5 \times 2$ (= 792 × 2) = 1584	M1	${}^{12}C_x \times 2 \text{ or } {}^nC_5 \times 2 seen on its own or added to their number of ways with neither, x \le 5, n \le 12$		
	Number required = $924 + 1584$ = 2508	A1			
		3			

Question	Answer	Marks	Guidance
4(a)	$0.65^7 + {}^7C_1 \ 0.65^6 \ 0.35^1 + {}^7C_2 \ 0.65^5 \ 0.35^2$	M1	Binomial term of form ${}^{7}C_{x} p^{x} (1-p)^{7-x}, 0 any p, x \neq 0, 7$
	0.049022 + 0.184776 + 0.29848	A1	Correct unsimplified answer
	0.532	A1	
		3	
4(b)	Mean = $142 \times 0.35 = 49.7$ Variance = $142 \times 0.35 \times 0.65 = 32.305$	B1	Correct unsimplified <i>np</i> and <i>npq</i> (condone σ = 5.684 evaluated)
	$P(X > 40) = P(z > \frac{40.5 - 49.7}{\sqrt{32.305}})$	M1	Substituting <i>their</i> μ and σ (no $\sqrt{\sigma}$ or σ^2) into ±standardisation formula with a numerical value for '40.5'
	P(z > -1.619)	M1	Using either 40.5 or 39.5 within a ±standardisation formula
		M1	Appropriate area Φ , from standardisation formula P($z >$) in final solution, must be probability
	0.947	A1	Correct final answer
		5	

9709/53

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(a)	Total number of ways = $\frac{8!}{3!2!}$ (= 3360)	B 1	Correct unsimplified expression for total number of ways
	Number of ways with V and E in correct positions = $\frac{6!}{2 \times 2!}$ (= 180)	B1	$\frac{6!}{2 \times 2!}$ alone or as numerator in an attempt to find the number of ways with V and E in correct positions. No \times, \pm
	Probability = $\frac{180}{3360} \left(=\frac{3}{56}\right)$ or 0.0536	B1 FT	Final answer from <i>their</i> $\frac{6!}{2 \times 2!}$ divided by <i>their</i> total number of ways
	Alternative method for question 5(a)		
	$\frac{1}{8} \times \frac{3}{7}$	M1	$\frac{a}{8} \times \frac{b}{7}$ seen, no other terms (correct denominators)
		M1	$\frac{1}{c} \times \frac{3}{d}$ seen, no other terms (correct numerators)
	$\frac{3}{56}$ or 0.0536	A1	
		3	

Question	Answer	Marks	Guidance
5(b)	Rs together and Es together: 5! (120)	B1	Alone or as numerator of probability to represent the number of ways with Rs and Es together, no \times , +, –
	Es together: $\frac{6!}{2!}(=360)$	B 1	Alone or as denominator of probability to represent the number of ways with Es together, no \times , + or –
	Probability = $\frac{5!}{\frac{6!}{2!}}$	M1	$\frac{their 5!}{their \frac{6!}{2!}}$ seen
	$\frac{1}{3}$	A1	OE
	Alternative method for question 5(b)		
	P(Rs together and Es together): $\frac{5!}{their \text{ total number of ways}} \left(=\frac{1}{28}\right)$	B1	
	P(Es together): $\frac{6!}{\frac{2!}{their \text{ total number of ways}}} \left(=\frac{3}{28}\right)$	B1	Alone or as numerator of probability to represent the P(Rs and Es together), no \times , +, –
	Probability = $\frac{\frac{1}{28}}{\frac{3}{28}}$	M1	Alone or as denominator of probability to represent the P(Es together), no \times , + or –
	$\frac{1}{3}$	A1	OE, $\frac{their \frac{1}{28}}{their \frac{3}{28}}$ seen
		4	

Question	Answer	Marks	Guidance	
6(a)	Scenarios:	M1	One 3 factor probability with 3, 3, 5 as denominators	
	HHT: $\frac{2}{3} \times \frac{2}{3} \times \frac{1}{5} = \frac{4}{45}$	M1	3 factor probabilities for 2 or 3 correct scenarios added, no	
	HTH: $\frac{2}{3} \times \frac{1}{3} \times \frac{4}{5} = \frac{8}{45}$		incorrect scenarios	
	THH: $\frac{1}{3} \times \frac{2}{3} \times \frac{4}{5} = \frac{8}{45}$			
	$Total = \frac{20}{45} = \frac{4}{9}$	A1	AG, Total of 3 products with clear context	
		3		
6(b)	x 0 1 2 3 Prob. 1 8 20 16	B1	Probability distribution table with correct outcomes with at least one probability, allow extra outcome values if probability of zero stated'	
	45 45 45 45	B1	2 of P(0), P(1) and P(3) correct	
		B1 FT	3 or 4 probabilities sum to 1 with P(2) correct	
		3		
6(c)	$Var(X) = \frac{0^2 \times 1 + 1^2 \times 8 + 2^2 \times 20 + 3^2 \times 16}{45} - \left(\frac{32}{15}\right)^2$	M1	Substitute <i>their</i> attempts at scores in correct variance formula, must have '– mean ² ' (FT if calculated) (condone probs not summing to 1); must be at least 2 non-zero values	
	$= \frac{8}{45} + \frac{80}{45} + \frac{144}{45} - \left(\frac{32}{15}\right)^2$			
	$\frac{136}{225}$ or 0.604	A1		
		2		

October/November 2020

Question Marks Guidance Answer Class widths: 5, 5, 10, 20, 30 At least 3 class widths correct and used in a calculation 7(a) **M1** Frequency density: 2, 1, 2.6, 1.6, 0.6 At least 3 correct frequency densities unsimplified - FT their **M1** class widths All correct heights on a histogram using a linear vertical scale A1 from zero – no FT Enquercy Density Correct upper bar ends (5.5, 10.5, 20.5, 40.5, 70.5) and 4 correct **B1** 3.0 lower bar ends of 5.5, 10.5, 20.5, 40.5. Condone 0 or 1. Linear scales with at least 3 values indicated on each axis, **B1** 2.6 vertical scale from 0, axes labelled 'fd' and 'no. of (incorrect) notes', or better. 2.0 1.5 1.0 0.5 10.5 30.5 40.5 50.5 60.5 20.5 70.5 0.5 Number of incorrect notes 5 LQ: 11 – 20 Both UQ and LQ correct 7(b) **B1** UQ: 21 – 40 Subtract lower end of their LQ interval from upper end of their Greatest IQR = 40 - 11 = 29B1 FT UQ interval 2

Question	Answer	Marks	Guidance
7(c)	Midpoints: 3 8 15.5 30.5 55.5	M1	At least 4 midpoints correct and used
	Mean = $\frac{3 \times 10 + 8 \times 5 + 15.5 \times 26 + 30.5 \times 32 + 55.5 \times 18}{91}$ = $\frac{30 + 40 + 403 + 976 + 999}{91}$ = $\frac{2448}{91}$	M1	Correct formula with <i>their</i> midpoints (not upper boundary, lower boundary, class width, frequency density, frequency or cumulative frequency)
	26.9, $26\frac{82}{91}$	A1	Accept 26 or 27
		3	

Cambridge International AS & A Level

MATHEMATICS

9709/51 October/November 2021

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics	Specific	Marking	Principles

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of

accuracy is not affected.

3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal	points.
		+

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/51

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\left(\frac{3}{4}\right)^6 \frac{1}{4}$	M1	$(1-p)^6 p, 0$
	$0.0445, \frac{729}{16384}$	A1	
		2	
1(b)	$\left(\frac{3}{4}\right)^9$	M1	$\left(\frac{3}{4}\right)^n$ or p^n , 0
	$0.0751, \frac{19683}{262144}$	A1	
		2	

Question	Answer	Marks	Guidance
2(a)	$\begin{bmatrix} \frac{\sum x}{40} - k = \frac{\sum (x - k)}{40} \end{bmatrix}$ $\frac{40 \times 34}{40} - k = \frac{520}{40}$	M1	Forms an equation involving Σx , $\Sigma(x-k)$ and k . Accept at a numeric stage with k .
	k[=34-13]=21	A1	Evaluated.
		2	

Question	Answer	Marks	Guidance
2(b)	Var = $\left[\frac{\Sigma(x-k)^2}{40} - \left(\frac{\Sigma(x-k)}{40}\right)^2\right] = \frac{9640}{40} - \left(\frac{520}{40}\right)^2 = [241 - 13^2 =]$	M1	Values substituted into an appropriate variance formula, accept unsimplified.
	72	A1	
		2	

Question	Answer	Marks	Guidance
3	$\left[P(T B') = \frac{P(T \cap B')}{P(B')} \right]$	M1	$0.45 \times a + 0.35 \times b + 0.2[\times 1], a = 0.7, 0.3b = 0.4, 0.6$, seen anywhere.
	$P(B') = 0.45 \times 0.7 + 0.35 \times 0.4 + 0.2 \times 1$ $\left[= 0.655, \frac{131}{200} \right]$	A1	Correct, accept unsimplified.
	$P(T \cap B') = 0.35 \times 0.4 \ [= 0.14, \ \frac{7}{50}]$	M1	Seen as numerator or denominator of a fraction.
	$P(T \mid B') = \frac{their 0.14}{their 0.655}$	M1	Values substituted into conditional probability formula correctly. Accept unsimplified. Denominator sum of 3 two-factor probabilities (condone omission of 1 from final factor). If clearly identified, condone from incomplete denominator.
	$0.214, \frac{28}{131}$	A1	If 0 marks awarded, SC B1 0.214 WWW.
		5	

Question	Answer	Marks		Guidance				
4(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1		0	1	2	2	
	$ \begin{vmatrix} p \\ 1 \\ 12 \end{vmatrix} = 0.0833 \begin{vmatrix} \frac{2}{12} \\ 12 \end{vmatrix} = 0.167 \begin{vmatrix} \frac{4}{12} \\ 12 \end{vmatrix} = 0.333 \begin{vmatrix} \frac{5}{12} \\ 12 \end{vmatrix} = 0.25 \begin{vmatrix} \frac{2}{12} \\ 12 \end{vmatrix} = 0.167 $		-1	-1	0	1	1	
			0	0	1	2	2	
			1	1	2	3	3	
			Table wi substitut Condone	vith x va ted, 0 < e any a	alues an $p < 1$.	d at leas al <i>x</i> valu	t one pro es if pro	obability bability stated as 0.
		B1	2 correct	t identi	ified pro	obabiliti	es.	
		B1	All prob	pabilitie	es corre	ct (accep	ot to 3sf)	
			SC if les SC B1 4	ss than 4 or 5 p	2 corre robabil	ct proba ities sun	bilities: ming to	one.
		3						
4(b)	$E(X) = -\frac{1}{12} + \frac{4}{12} + \frac{6}{12} + \frac{6}{12} \left[= \frac{15}{12} \right]$	M1	May be expressi Probabil	implied ion. lities m	d by use iust sum	e in Vari n to 1 ± (ance, ac).001.	cept unsimplified
	Var (X) = $\frac{1}{12} + 0 + \frac{4}{12} + \frac{12}{12} + \frac{18}{12} - \left(\frac{15}{12}\right)^2$	M1	Appropr accept p Condone	riate va probabil e $\frac{35}{12}$ -	riance f lities no $\left(\frac{15}{12}\right)^2 c$	formula of summinor $\frac{35}{12} - \frac{2}{3}$	using <i>the</i> ing to 1. $\frac{25}{9}$ from	eir $(E(X))^2 \cdot FT$ correct table.
	$\left[\frac{35}{12} - \frac{25}{16} = \right] \frac{65}{48}, 1.35$	A1	WWW					
		3						

Question	Answer	Marks	Guidance				
5(a)	[8! =] 40 320	B1	Evaluated, exact value only.				
		1					
5(b)	Method 1 [^ ^ ^ R ^ ^ S ^ ^]						
	$7! \times {}^{8}C_{2} \times 2$	M1	$7! \times k$ seen, k an integer > 1.				
		M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n = 7, 8$ or 9, m an integer > 1.				
	282 240	A1	Exact value only. SC B1 for final answer 282 240 WWW.				
	Method 2 [Total number of arrangements – Arrangements with R & S together]						
	$9! - 8! \times 2$	M1	9! - k, k an integer < 362 880.				
		M1	$m - 8! \times n$, m an integer > 40 320, $n = 1,2$.				
	282 240	A1	Exact value only. SC B1 for final answer 282 240 WWW.				
		3					
5(c)	${}^{9}C_{5} [\times {}^{4}C_{4}]$	M1	${}^{9}C_{x} [\times {}^{9-x}C_{9-x},] x = 4, 5. \text{ Condone} \times 1 \text{ for } {}^{9-x}C_{9-x}.$ Condone use of P.				
	126	A1	www				
		2					

Question	Answer	Marks	Guidance
5(d)	[Number of ways with Raman and Sanjay together on back row =] ${}^{7}C_{3}$ [Number of ways with Raman and Sanjay together on front row =] ${}^{7}C_{2}$	M1	$^{7}C_{x}$ seen, $x = 3$ or 2.
	[Total =] 35 + 21	M1	Summing two correct scenarios.
	56	A1	Evaluated – may be seen used in probability. If M0 scored, SC B1 for 56 WWW.
	Probability = $\frac{their 56}{their(c)} = \frac{56}{126}, \frac{4}{9}, 0.444$	B1 FT	FT <i>their</i> 56 from adding 2 or more scenarios in numerator and <i>their</i> (c) or correct as denominator.
		4	

Question		Answer	Marks	Guidance
6(a)	Rebels	Sharks	B1	Correct stem, ignore extra values (not in reverse).
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Correct Rebels labelled on left, leaves in order from right to left and lined up vertically, no commas.	
	9 5 3	9 2 10	B1	Correct Sharks labelled on same diagram, leaves in order and lined up vertically, no commas.
	Key: 8 7 2 means 78 kg	for Rebels and 72 kg for Sharks	B1	Correct key for their diagram, need both teams identified and 'kg' stated at least once here or in leaf headings or title. SC If 2 separate diagrams drawn, SC B1 if both keys
				meet these criteria.
			4	

Question	Answer	Marks	Guidance
6(b)	Median = 84 (kg)	B1	
	[UQ = 93, LQ = 80] 93 - 80	M1	$95 \leq UQ \leq 89 - 79 \leq LQ \leq 82$
	[IQR =] 13 (kg)	A1	WWW
		3	
6(c)	Box and whisker with end points 75 and 102	B 1	Whiskers drawn to correct end points not through box, not joining at top or bottom of box.
	Median and quartiles plotted as found in (b)	B1 FT	Quartiles and median plotted as box graph.
		2	
6(d)	e.g. Average weight of Rebels is higher than average weight of Sharks	B1	Acceptable answers refer to: Range, skew, central tendency within context. E.g. range of Rebels is greater B0 . Range of weights of the rebels is greater B1 . Simple value comparison insufficient.
		1	

Question	Answer	Marks	Guidance
7(a)(i)	$P(X > 142) = P\left(Z > \frac{142 - 125}{24}\right)$	M1	Substitution of correct values into the ±Standardisation formula, allow continuity correction, not σ^2 , $\sqrt{\sigma}$.
	[= P(Z > 0.7083) =]1 - 0.7604	M1	Appropriate numerical area Φ , from final process, must be probability, expect $p < 0.5$.
	0.2396	A1	$0.239 \leq p \leq 0.240$ to at least 3sf.
	<i>Their</i> 0.2396 × 365 [= 87.454]	M1	FT <i>their</i> 4sf (or better) probability.
	87 or 88	A1 FT	Final answer must be positive integer, no indication of approximation/rounding, only dependent on previous M mark. SC B1 FT for <i>their</i> 3sf probability \times 365 = integer value, condone 0.24 used.
		5	
7(a)(ii)	$P(0, 1) = 0.7604^{10} + {}^{10}C_1 \times 0.2396^1 \times 0.7604^9$	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10$, any <i>p</i> .
	$[= 0.064628 \pm 0.20364]$	A1 FT	Correct unsimplified expression using <i>their</i> probability to at least 3sf from (a)(i) or correct.
	0.268	A1	AWRT, WWW.
		3	
7(b)	$z = \pm 1.282$	B1	Correct value only, critical value.
	$\frac{t - 125}{24} = -1.282$	M1	Use of \pm Standardisation formula with correct values substituted, allow continuity correction, σ^2 , $\sqrt{\sigma}$, to form an equation with a <i>z</i> -value and not probability.
	<i>t</i> = 94.2	A1	AWRT, condone AWRT 94.3. Not dependent on B mark.
		3	

Cambridge International AS & A Level

MATHEMATICS

9709/52 October/November 2021

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	thematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/52

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

9709/52

Question	Answer	Marks	Guidance
1(a)	$\frac{82}{180}, \frac{41}{90}, 0.456$	B1	
		1	
1(b)	$\left[P(M D) = \frac{P(M \cap D)}{P(D)}\right] = \frac{\frac{11}{180}}{\frac{20}{180} + \frac{11}{180}} \text{ or } \frac{0.6011}{0.1722}$	M1	Their identified $\frac{P(M \cap D)}{P(D)}$ or from data table $\frac{11}{20+11}$, accept unsimplified, condone × 180.
	$\frac{11}{31}, 0.355$	A1	Final answer.
		2	

Question	Answer	Marks	Guidance
1(c)	$P(F) = \frac{100}{180}, \frac{5}{9}, 0.5556 \text{ OE } P(G) = \frac{82}{180}, \frac{41}{90}0.4556 \text{ OE}$		<i>Their</i> identified $P(F) \times their$ identified $P(G)$ or correct seen, can be unsimplified.
	$P(F \cap G) = \frac{38}{180}, \frac{19}{90}, 0.2111 OE$ $P(F) \times P(G) = \frac{100}{180} \times \frac{82}{180} = \frac{41}{162}, 0.2531 OE \left[\neq \frac{38}{180} \right]$ Not independent	A1	$\frac{41}{162}, \frac{38}{180}, P(F \cap G)$ and $P(F) \times P(G)$ seen with correct conclusion, WWW. Values and labels must be seen.
	Alternative method for question 1(c)		
	$P(F \cap G) = \frac{38}{180}, \frac{19}{90}, 0.2111 \text{ OE } P(G) = \frac{82}{180}, \frac{41}{90}, 0.4556 \text{ OE}$ $P(F G) = \frac{\frac{38}{180}}{\frac{82}{180}} = \frac{19}{41}, 0.4634 \text{ OE}$ $\neq P(F) = \frac{100}{180}, \frac{5}{9}, 0.5556 \text{ OE}$ Not independent	M1	P(F G) (OE) unsimplified with <i>their</i> identified probs or correct
		A1	$\frac{19}{41}, \frac{100}{180}, P(F \cap G)$ and $P(F G)$ seen with correct conclusion WWW. Values and labels must be seen.
		2	

Question	Answer	Marks	Guidance
2(a)	$^{11}C_5 \times {}^{4}C_1$	M1	$^{11}C_5 \times {}^4C_1$ condone $^{11}P_5 \times {}^4P_1$ no +, -, × or ÷.
	1848	A1	CAO as exact.
		2	
2(b)	Method 1 [Identifying scenarios]		
	[Neither selected =] ${}^{13}C_6$ [= 1716] [Only Jane selected =] ${}^{13}C_5$ [= 1287] [Only Kate selected =] ${}^{13}C_5$ [= 1287]	M1	Either ¹³ C ₆ seen alone or ¹³ C ₅ seen alone or $\times 2$ (condone ¹³ P _n , $n = 5,6$).
	[Total =] 1716 + 1287 + 1287	M1	Three correct scenarios only added, accept unsimplified (values may be incorrect).
	4290	A1	
	Method 2 [Total number of selections – selections with Jane and Kate both picked]		
	$^{15}C_6 - ^{13}C_4 [= 5005 - 715]$	M1	${}^{15}C_6 - k$, k a positive integer < 5005, condone ${}^{15}P_{6}$.
		M1	$m - {}^{13}C_4$, <i>m</i> integer > 715, condone $n - {}^{13}P_4$, <i>n</i> > 17 160.
	4290	A1	
		3	
			SC Where the condition of 2(a) is also applied in 2(b) , the final answer is 1512 SC M1 M1 A0 max. The method marks can be earned for the equivalent stages in each method. Method $1 {}^{4}C_{1} \times {}^{9}C_{5} + {}^{4}C_{1} \times {}^{9}C_{4} \times 2$ Method $2 {}^{4}C_{1} \times {}^{11}C_{5} - {}^{4}C_{1} \times {}^{9}C_{3}$

9709/52

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance				
3(a)	For one yellow: YGG + GYG +GGY $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times 3$	M1	$\frac{a}{9} \times \frac{b}{8} \times \frac{c}{7}$, $0 < a, b, c$ integers ≤ 5 , for one arrangement.				
		M1	<i>Their</i> three-factor probability \times 3, ${}^{3}C_{1}$, ${}^{3}C_{2}$ or ${}^{3}P_{1}$ (or repeated adding) no additional terms.				
	$\left[\frac{180}{504}\right] = \frac{5}{14}$		AG. Convincingly shown, including identifying possible scenarios, may be on tree diagram WWW.				
		3					
	Alternative method for question 3(a)						
	$\frac{{}^{5}C_{1} \times {}^{4}C_{2}}{{}^{9}C_{3}}$	M1	$\frac{{}^{5}C_{1} \times {}^{4}C_{2}}{{}^{9}C_{r}}, r = 2, 3, 4$				
		M1	$\frac{{}^{5}C_{s} \times {}^{4}C_{t}}{{}^{9}C_{3}}, s+t=3$				
	$\left[\frac{30}{84}\right] = \frac{5}{14}$	A1	AG. Convincingly shown, WWW.				
		3					

Question	Answer					Marks	Guidance
3(b)	3(b) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1	Table with correct X values and one correct probability inserted appropriately. Condone any additional X values if probability stated as 0.				
		B1	Second identified correct probability, may not be in table.				
		B1	All probabilities identified and correct . SC if less than 2 correct probabilities or <i>X</i> value(s) omitted: SC B1 3 or 4 probabilities summing to one.				
						3	
3(c)	[E(X) =	$=$] $\frac{840}{504}, \frac{5}{3}, 1.$	67			B1	OE Must be evaluated. SC B1 FT correct unsimplified expression from incorrect $3(b)$ using at least 3 probabilities, $0 .$
						1	

Question	Answer	Marks	Guidance
4(a)	$\frac{9!}{3!}$	M1	$\frac{9!}{e!}, e=2,3$
	60 480	A1	
		2	

Question	Answer	Marks	Guidance
4(b)	$\frac{7!}{3!} \times 2 \times 6$	M1	$\frac{7!}{3!} \times k$ seen, k an integer > 0.
		M1	$\frac{m!}{n!} \times 2 \times q 7 \le m \le 9, 1 \le n \le 3, 1 \le q \le 8 \text{ all integers.}$
		M1	$\frac{m!}{n!} \times p \times 6 7 \le m \le 9, \ 1 \le n \le 3, \ 1 \le p \le 2 \text{ all integers.}$ (Accept 3P2 for 6) If M0 M0 M0 awarded, SC M1 for $t \times 12, t$ an integer $\ge 20, \frac{5!}{3!}$.
	10 080	A1	Exact value.
	Alternative method for question 4(b)		
	$\frac{{}^{7}P_{2}\times6!\times2}{3!}$	M1	$\frac{6!}{3!} \times k$ seen, k an integer > 0.
		M1	$\frac{m!}{n!} \times^7 \mathbf{P}_2 \times q m = 6,9, \ 1 \le n \le 3, \ 1 \le q \le 2 \text{ all integers.}$
		M1	$\frac{m!}{n!} \times {}^{7}\mathbf{P_{r}} \times 2 m = 6, 9, 1 \le n \le 3, 1 \le r \le 5 \text{ all integers.}$
			If M0 M0 M0 awarded, SC M1 for $t \times 84$, t an integer ≥ 20 , $\frac{5!}{3!}$.
	10 080	A1	Exact value.

Question	Answer	Marks	Guidance			
4(b)	Alternative method for question 4(b)					
	$\frac{7!}{3!}$ × 4P2	M1	$\frac{7!}{3!} \times k$ seen, k an integer > 0.			
		M1	$t \times {}^{4}P_{2} \text{ or } 12, t \text{ an integer} \ge 20, \frac{5!}{3!}$.			
		M1	$\frac{m!}{n!} \times 4P2 7 \le m \le 9, \ 1 \le n \le 3 \text{ all integers.}$			
	10 008	A1	Exact value.			
		4				

Question	Answer	Marks	Guidance
5(a)	$[P(0, 1, 2) =] {}^{10}C_0 0.16^0 0.84^{10} + {}^{10}C_1 0.16^1 0.84^9 + {}^{10}C_2 0.16^2 0.84^8$		One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 \le x \le 10$, any <i>p</i> .
	$[= 0.17490 \pm 0.333145 \pm 0.28555]$	A1	Correct unsimplified expression, or better.
	0.794	A1	$0.7935 , mark at most accurate.If M0 scored, SC B1 for final answer 0.794.$
		3	
5(b)	$(0.84)^7 0.16$	M1	$(1-p)^7 p, 0$
	0.0472	A1	0.0472144 to at least 3sf.
		2	
Question	Answer	Marks	Guidance
----------	---	-------	---
5(c)	$4 \times 0.0472 \times (1 - 0.0472)^3$	M1	$4 \times q(1-q)^3$, $q = their$ (b) or correct.
	0.163	A1	$0.163 \le p \le 0.1634$, mark at most accurate from <i>their</i> probability to at least 3sf.
		2	

Question	Answer	Marks	Guidance
6(a)	$\left[P(X > 28.6) = \right] P\left(Z > \frac{28.6 - 32.2}{9.6}\right)$ $\left[= P(Z > -0.375) \right]$	M1	28.6, 32.2 and 9.6 substituted appropriately in \pm Standardisation formula once, allow continuity correction of \pm 0.05, no σ^2 , $\sqrt{\sigma}$.
	$[\Phi(their 0.375) =] their 0.6462$	M1	Appropriate numerical area, from final process, must be probability, expect > 0.5 .
	0.646	A1	AWRT
		3	
6(b)	$z = \pm 0.842$	B1	$0.841 < z \le 0.842$ or $-0.842 \le z < -0.841$ seen.
	$\frac{t-32.2}{9.6} = 0.842$	M1	Substituting 32.2 and 9.6 into \pm standardisation formula, no continuity correction, allow σ^2 , $\sqrt{\sigma}$, must be equated to a <i>z</i> -value.
	t = 40.3	A1	$40.28 \leqslant t \leqslant 40.3$ WWW
		3	

Question	Answer	Marks	Guidance
6(c)	$P\left(-\frac{15}{9.6} < Z < \frac{15}{9.6}\right)$ $P(-1.5625 < Z < 1.5625)$	M1	Identifying at least one of $\frac{15}{9.6}$ and $-\frac{15}{9.6}$ as the appropriate z-values or substituting <i>their</i> (32.2 ± 15) into ± Standardisation formula once, no continuity correction, σ^2 nor $\sqrt{\sigma}$. Condone ±1.563 for M1 .
	$[2 \Phi(\frac{15}{2}) - 1]$	A1	p = 0.941 AWRT SOI
	$= 2 \times 0.9409 - 1$	M1	Appropriate area $2\Phi - 1$ oe, (eg $1 - 2 \times 0.0591$, 2 × (0.9409 - 0.5) or 0.9409 - 0.0591), from final process, must be probability > 0.5.
	0.882	A1	
		4	

Question	Answer	Marks	Guidance
7(a)	Cumulative frequency graph drawn	B1	Axes labelled 'cumulative frequency' (or cf) from 0 to at least 140 and 'distance (or d) [in] m' from 0 to at least 1600, linear scales with at least 3 values stated.
		B1	All plotted correctly at correct upper end points (200 etc.) curve drawn accurately joined to (0, 0) (straight line segments B0) but no daylight above 140. Cf scale no less than 2 cm = 20 children .
		2	

Question	Answer	Marks	Guidance
7(b)	[UQ at 75% of 140 = 105, LQ at 25% of 140 = 35] [IQR:] 700 – 260	M1	Accept $660 \leq UQ \leq 720 - 240 \leq LQ \leq 290$. If values are outside our range, FT providing scales linear and increasing cf drawn.
	440	A1	Accept correct evaluation of $660 \le their UQ \le 720 - 240 \le their LQ \le 290$ with clear indication that graph has been used for at least one of 105 or 35.
		2	

9709/52

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance									
7(c)	$[Mean =] 16 \times 100 + 30 \times 250 + 42 \times 400 + 34 \times 700 + 12 \times 1050 + 6 \times 1400$	B1	Frequencies	16	30	42	34	12	6			
	140		Mid-points	100	250	400	700	1050	1400			
			5 or 6 correct f	reque	ncy va	lues se	een.			-		
		B1	5 or 6 correct r	nidpoi	int val	ues see	en.					
	M1Values substituted into mean be in the class – condone 1 de AcceptAccept $\frac{1600 + 7500 + 16800}{1600 + 7500 + 16800}$ Condone $\frac{70770}{140}$ for M1.						an formula using <i>their</i> midpoints which musdata error. $\frac{00+23800+12600+8400}{140} \text{ or } \frac{70700}{140}.$					
	505	A1	WWW									
	Variance = $\frac{16 \times 100^{2} + 30 \times 250^{2} + 42 \times 400^{2} + 34 \times 700^{2} + 12 \times 1050^{2} + 6 \times 1400^{2}}{140}$ -505 ²	M1	IValues substituted into variance formula using (<i>their</i> mean) ² and <i>their</i> midpoints and <i>their</i> frequencies (including for denominator). Accept unsimplified. Condone 1 data error. Accept: $\begin{bmatrix} 160\ 000\ +1\ 875\ 000\ +6\ 720\ 000\ +16\ 660\ 000\ +13\ 230\ 000\ +11\ 760\ 00\ 140\ 0r\ \frac{50\ 405\ 000}{140}\ or\ 360\ 035.7143] - \begin{bmatrix} 505^2\ or\ 255\ 025 \end{bmatrix}$ If formula stated accept 105\ 010\ or\ 105\ 011\ WWW.						$(1)^2$ and <i>their</i> inator). Accept (2)			
	S.d. = $\left[\sqrt{105010.7} =\right]324$	A1	l WWW									
		6										

Cambridge International AS & A Level

MATHEMATICS

9709/53 October/November 2021

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Г

Ma	athematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/53

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	²³ C ₁₇	M1	$^{23}C_x$ or $^{y}C_{17}$ or $^{z}C_6$, <i>x</i> , <i>y</i> or <i>z</i> are integers no +, -, × or ÷.
	100947	A1	CAO
		2	

Question	Answer										Marks	Guidance		
2(a)		Lake	view					Rive	erside				B1	Correct stem, ignore extra values.
	8	9 7	4 6	0 2	1 2	8 0	8 1	3	4	5	5		B1	Correct Lakeview labelled on left, leaves in order from right to left and lined up vertically, no commas.
		3	2	0 1	3	0	6						B1	Correct Riverside labelled on same diagram, leaves in order and lined up vertically, no commas.
	Key:	6 2 3	means	s 26m	1 for L	akevi	ew ar	nd 23n	n for F	Rivers	ide		B1	Correct key for their diagram, need both teams identified and 'm' stated at least once here or in leaf headings or title.
														SC If 2 separate diagrams drawn: SC B1 if both keys meet these criteria.
													4	
2(b)	UQ =	= 32, L	.Q =]	19									M1	$(30 \le \mathrm{UQ} \le 33) - (14 \le \mathrm{LQ} \le 22)$
	IQR =	= 32 -	- 19 =	13									A1	WWW
													2	

Question	Answer	Marks	Guidance
3(a)	Cw: 5 5 10 10 20	M1	At least 4 frequency densities calculated (f/cw), accept unsimplified and class widths ± 1 of true values. May be implied by graph.
	Fd: 4.6 20.4 13.5 7.6 1.2	A1	All heights correct on graph NOT FT
	Enquercy density	B1	Bar ends at 0, 5, 10, 20, 30, 50 clear intention not to draw at 4.5 or 5.5 etc.
		B1	Axes labelled: Frequency density (fd), time (t) and mins (or appropriate title). Linear scales between 0 and 20.4 or above on vertical axis, and 0 and 50 or above on the horizontal axis. (Axes may be reversed.)
		4	
3(b)	$\frac{2.5 \times 23 + 7.5 \times 102 + 15 \times 135 + 25 \times 76 + 40 \times 24}{360}$	M1	Uses at least 4 midpoint attempts (e.g. 2.5 ± 0.5) in correct formula, accept unsimplified expression, denominator either correct or <i>their</i> Σ frequencies .
	$\left[\frac{5707.5}{360}\right] = 15.9, \ 15\frac{41}{48}$	A1	Evaluated.
		2	

9709/53

Question	Answer	Marks	Guidance
4(a)	$P(X > 43.2) = P\left(Z > \frac{43.2 - 41.2}{3.6}\right) = P(Z > 0.5556)$	M1	Use of ±Standardisation formula once, allow continuity correction, not σ^2 , $\sqrt{\sigma}$.
	$1 - \Phi(0.5556) = 1 - 0.7108$	M1	Appropriate area Φ , from final process, must be probability.
	0.289	A1	AWRT
		3	
4(b)	Probability = $1 - their$ (a) = $1 - 0.2892 = 0.7108$	B1FT	1 - their (a) or correct.
	0.7108 × 365 = 259.4 259, 260	B1FT	FT <i>their</i> 4SF (or better) probability, final answer must be positive integer.
		2	
4(c)	$z = \pm 1.645$	B1	CAO, critical z value.
	$\frac{t - 41.2}{3.6} = -1.645$	M1	Use of ±standardisation formula with μ , σ equated to a <i>z</i> -value, no continuity correction, allow σ^2 , $\sqrt{\sigma}$.
	<i>t</i> = 35.3	A1	
		3	

Question	Answer	Marks	Guidance
5(a)	${}^{5}P_{2} \times {}^{7}P_{4}$ or $5 \times 4 \times 7 \times 6 \times 5 \times 4$	M1	${}^{5}\mathbf{P}_{x} \times {}^{7}\mathbf{P}_{y}, 1 \leq x \leq 4, 1 \leq y \leq 6$
	16 800	A1	
		2	

Question	Answer	Marks	Guidance	
5(b)	Method 1 [Identify scenarios]			
	With A and no 5: $8 \times {}^{6}P_{4}$ or $(1 \times 4 \times 6 \times 5 \times 4 \times 3) \times 2$ or $4C1 \times 2! \times 6P4 =$	M1	One number of ways correct, accept unsimplified.	
	With 5 and no A: ${}^{4}P_{2} \times 4 \times {}^{6}P_{3}$ or $(4 \times 3 \times 1 \times 6 \times 5 \times 4) \times 4$ or $4P2 \times 6C3 \times 4! = 5760$ With A and 5: $8 \times 4 \times {}^{6}P_{3}$ or $(4 \times 1 \times 1 \times 6 \times 5 \times 4) \times 8$ or $4C1 \times 2! \times 6C3 \times 4! = 3840$	M1	Add 2 or 3 identified correct scenarios only, accept unsimplified.	
	[Total =] 12 480	A1	САО	
	Method 2 [total number of codes – number of codes with no A or 5]			
	No A or 5 : $(4 \times 3) \times (6 \times 5 \times 4 \times 3) = 4320$	M1	${}^{4}P_{2} \times {}^{6}P_{4}$ or ${}^{4}C_{2} \times {}^{6}C_{4}$ seen, accept unsimplified.	
	Required number = their (a) – their 4320	M1	<i>Their</i> 5(a) (or correct) – <i>their</i> (No A or 5) value.	
	12 480	A1		
	Method 3 [subtracting double counting]			
	With A ${}^{4}P_{1} \times {}^{7}P_{4} \times 2$ or ${}^{4}C_{1} \times 2 \times {}^{7}C_{4} \times 4! = 6720$ With 5 ${}^{5}P_{2} \times {}^{6}P_{3} \times 4$ or ${}^{5}C_{2} \times 2 \times {}^{6}C_{3} \times 4! = 9600$ With A and 5 = ${}^{4}P_{1} \times {}^{6}P_{3} \times 8$ or 4C1 $\times 2! \times 6$ C3 $\times 4! \times 8 = 3840$	M1	One outcome correct, accept unsimplified.	
	Required number = $6720 + 9600 - 3840$	M1	Adding 'with a' to 'with 5' and subtracting 'A and 5'.	
	12 480	A1	САО	
		3		

Question	Answer	Marks	Guidance
5(c)	Method 1 – number of successful codes divided by total		
	$(1 \times) 3 \times {}^{5}P_{2}$	M1	$3 \times {}^{5}P_{n}$, $n = 2, 3$. Condone $3 \times {}^{5}C_{2}$, no + or –.
	Probability = $\frac{their 3 \times 5P2}{their 16800}$	M1	Probability = $\frac{their 60}{their 16 800}$.
	$\frac{1}{280}, 0.00357$	A1	
	Method 2 – product of probabilities of each part of code		
	$\frac{1}{5} \times \frac{1}{4} \times \frac{1}{7} \times \frac{3}{6} \left(\times \frac{5}{5} \times \frac{4}{4} \right) \text{ or } \frac{1}{5} \times \frac{1}{4} \times \frac{3 \times 5P2}{7P4}$	M1	$\frac{1}{5} \times \frac{1}{4} \times k$ where $0 < k < 1$ for considering letters.
		M1	$t \times \frac{1}{7} \times \frac{3}{6}$ or $t \times \frac{3 \times 5P2}{7P4}$ where $0 < t < 1$.
	$\frac{1}{280}$	A1	САО
		3	

Question	Answer	Marks	Guidance
6(a)	p + q + 0.65 = 1	B1	Sum of probabilities = 1.
	p + 2q + 0.15 = 0.55	B1	Use given information.
	Solve 2 linear equations	M1	Either a single expression with one variable eliminated formed or two expressions with both variables on the same side seen with at least one variable value stated.
	$p = 0.3, \frac{3}{10}, q = 0.05, \frac{1}{20}$	A1	CAO, both WWW If M0 with correct answers SC B1 .
		4	
6(b)	Var (X) = their $0.3 + 4 \times their \ 0.05 + 9 \times 0.05 - 0.55^2$	M1	Appropriate variance formula including $(E(X))^2$, accept unsimplified.
	$0.6475\left[rac{259}{400} ight]$	A1	CAO (must be exact).
		2	
6(c)	$1 - P(0, 1, 2) = 1 - ({}^{12}C_0 \ 0.3^0 \ 0.7^{12} + {}^{12}C_1 \ 0.3^1 \ 0.7^{11} + {}^{12}C_2 \ 0.3^2 \ 0.7^{10})$	M1	One correct term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$, $0 .$
	1 - (0.01384 + 0.07118 + 0.16779)	A1FT	Correct unsimplified expression, or better in final answer. Unsimplified expression must be seen to FT <i>their</i> p from 6(a) or correct.
	0.747	A1	
		3	
6(d)	$(0.95)^8 \times 0.05 = 0.0332$ or $0.95^8 - 0.95^9 = 0.0332$	B1	Evaluated.
		1	

9709/53

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(a)	Probabilities: $\frac{x+1}{x+10}$, $\frac{9}{x+10}$, $\frac{x}{x+10}$, $\frac{10}{x+10}$	B1	One probability correct in correct position.
		B1	Another probability correct in correct position.
		B1	Other two probabilities correct in correct positions.
		3	
7(b)	$\frac{4}{10} \times their \frac{10}{x+10}$	M1	Method consistent with <i>their</i> tree diagram.
	$\frac{4}{x+10}$	A1	AG
		2	

Question	Answer	Marks	Guidance
7(c) $\frac{4}{x+10} = \frac{1}{6}$ x+10=24, x=14 $P(ARed BRed) = P(ARed \cap BRed) \div P(BRed)$ $\frac{\frac{6}{10} \times their \frac{x+1}{x+10}}{\frac{6}{10} \times their \frac{x+1}{x+10} + \frac{4}{10} \times their \frac{x}{x+10}} = \frac{\frac{6}{10} \times \frac{15}{24}}{\frac{6}{10} \times \frac{15}{24} + \frac{4}{10} \times \frac{14}{24}} = \frac{\frac{3}{8}}{\frac{73}{120}}$ $\frac{\frac{45}{73}}{\frac{73}{73}}, 0.616[4]$	$\frac{4}{x+10} = \frac{1}{6}$ x+10 = 24, x = 14	B1	Find value of <i>x</i> . Can be implied by correct probabilities in calculation.
	$P(ARed BRed) = P(ARed \cap BRed) \div P(BRed)$ $\frac{6}{10} \times their \frac{x+1}{x+10} \qquad \qquad \frac{6}{10} \times \frac{15}{24} \qquad \qquad \frac{3}{20}$	B1 FT	$\frac{6}{10} \times their \frac{x+1}{x+10}$ as numerator or denominator of fraction.
	M1	$\frac{6}{10} \times their \frac{x+1}{x+10} + \frac{4}{10} \times their \frac{x}{x+10}$ seen anywhere.	
		A1 FT	Seen as denominator of fraction.
	$\frac{45}{73}, 0.616[4]$	A1	If B0 M0: SC B1 for $\frac{\frac{3}{8}}{\frac{73}{120}}$ or $\frac{0.375}{0.6083}$ SC B1 $\frac{45}{73}$ or 0.616.
		5	